DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density

Abstract

A water-miscible anthraquinone with polyethylene glycol (PEG)-based solubilizing groups is introduced as the redox-active molecule in a negative electrolyte (negolyte) for aqueous redox flow batteries, exhibiting the highest volumetric capacity among aqueous organic negolytes. We synthesized and screened a series of PEG-substituted anthraquinones (PEGAQs) and carefully studied one of its isomers, namely, 1,8-bis(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)anthracene-9,10-dione (AQ-1,8-3E-OH), which has high electrochemical reversibility and is completely miscible in water of any pH. Here, a negolyte containing 1.5 M AQ-1,8-3E-OH, when paired with a ferrocyanide-based positive electrolyte across an inexpensive, nonfluorinated permselective polymer membrane at pH 7, exhibits an open-circuit potential of 1.0 V, a volumetric capacity of 80.4 Ah/L, and an energy density of 25.2 Wh/L.

Authors:
 [1]; ORCiD logo [1];  [2];  [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Harvard Univ., Cambridge, MA (United States)
  2. Harvard Univ., Cambridge, MA (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1597276
Grant/Contract Number:  
AR0000767; AC05-76RL01830; DGE1144152; DGE1745303; 428977
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 4; Journal Issue: 6; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Potassium; Electrical properties; Energy density; Batteries; Electrolytes

Citation Formats

Jin, Shijian, Jing, Yan, Kwabi, David G., Ji, Yunlong, Tong, Liuchuan, De Porcellinis, Diana, Goulet, Marc-Antoni, Pollack, Daniel A., Gordon, Roy G., and Aziz, Michael J. A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density. United States: N. p., 2019. Web. doi:10.1021/acsenergylett.9b00739.
Jin, Shijian, Jing, Yan, Kwabi, David G., Ji, Yunlong, Tong, Liuchuan, De Porcellinis, Diana, Goulet, Marc-Antoni, Pollack, Daniel A., Gordon, Roy G., & Aziz, Michael J. A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density. United States. https://doi.org/10.1021/acsenergylett.9b00739
Jin, Shijian, Jing, Yan, Kwabi, David G., Ji, Yunlong, Tong, Liuchuan, De Porcellinis, Diana, Goulet, Marc-Antoni, Pollack, Daniel A., Gordon, Roy G., and Aziz, Michael J. Wed . "A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density". United States. https://doi.org/10.1021/acsenergylett.9b00739. https://www.osti.gov/servlets/purl/1597276.
@article{osti_1597276,
title = {A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density},
author = {Jin, Shijian and Jing, Yan and Kwabi, David G. and Ji, Yunlong and Tong, Liuchuan and De Porcellinis, Diana and Goulet, Marc-Antoni and Pollack, Daniel A. and Gordon, Roy G. and Aziz, Michael J.},
abstractNote = {A water-miscible anthraquinone with polyethylene glycol (PEG)-based solubilizing groups is introduced as the redox-active molecule in a negative electrolyte (negolyte) for aqueous redox flow batteries, exhibiting the highest volumetric capacity among aqueous organic negolytes. We synthesized and screened a series of PEG-substituted anthraquinones (PEGAQs) and carefully studied one of its isomers, namely, 1,8-bis(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)anthracene-9,10-dione (AQ-1,8-3E-OH), which has high electrochemical reversibility and is completely miscible in water of any pH. Here, a negolyte containing 1.5 M AQ-1,8-3E-OH, when paired with a ferrocyanide-based positive electrolyte across an inexpensive, nonfluorinated permselective polymer membrane at pH 7, exhibits an open-circuit potential of 1.0 V, a volumetric capacity of 80.4 Ah/L, and an energy density of 25.2 Wh/L.},
doi = {10.1021/acsenergylett.9b00739},
journal = {ACS Energy Letters},
number = 6,
volume = 4,
place = {United States},
year = {Wed May 22 00:00:00 EDT 2019},
month = {Wed May 22 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 100 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electricity storage for intermittent renewable sources
journal, January 2012

  • Rugolo, Jason; Aziz, Michael J.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee02542f

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Ion Exchange Kinetics. A Nonlinear Diffusion Problem. II. Particle Diffusion Controlled Exchange of Univalent and Bivalent Ions
journal, November 1958

  • Plesset, M. S.; Helfferich, F.; Franklin, J. N.
  • The Journal of Chemical Physics, Vol. 29, Issue 5
  • DOI: 10.1063/1.1744656

Aqueous Flow Batteries: Research and Development
journal, November 2018

  • Liu, Wanqiu; Lu, Wenjing; Zhang, Huamin
  • Chemistry - A European Journal, Vol. 25, Issue 7
  • DOI: 10.1002/chem.201802798

Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane: Mechanical Properties of Nafion® 117
journal, February 2005

  • Bauer, F.; Denneler, S.; Willert-Porada, M.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 43, Issue 7
  • DOI: 10.1002/polb.20367

Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale Storage of Electrical Energy
journal, December 2017

  • Yang, Zhengjin; Tong, Liuchuan; Tabor, Daniel P.
  • Advanced Energy Materials, Vol. 8, Issue 8
  • DOI: 10.1002/aenm.201702056

Estimating the cost of organic battery active materials: a case study on anthraquinone disulfonic acid
journal, July 2018

  • Dieterich, Vincent; Milshtein, Jarrod D.; Barton, John L.
  • Translational Materials Research, Vol. 5, Issue 3
  • DOI: 10.1088/2053-1613/aacb0e

Alkaline Quinone Flow Battery with Long Lifetime at pH 12
journal, September 2018


A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention
journal, February 2017


A Phosphonate‐Functionalized Quinone Redox Flow Battery at Near‐Neutral pH with Record Capacity Retention Rate
journal, January 2019

  • Ji, Yunlong; Goulet, Marc‐Antoni; Pollack, Daniel A.
  • Advanced Energy Materials, Vol. 9, Issue 12
  • DOI: 10.1002/aenm.201900039

A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries
journal, June 2018


Modelling the swelling and osmotic properties of clay soils. Part II: The physical approach
journal, February 2012


A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

Mechanics-based model for non-affine swelling in perfluorosulfonic acid (PFSA) membranes
journal, May 2009


An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System
journal, October 2016

  • Janoschka, Tobias; Martin, Norbert; Hager, Martin D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 46
  • DOI: 10.1002/anie.201606472

High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone
journal, September 2018


Alkaline quinone flow battery
journal, September 2015


A redox-flow battery with an alloxazine-based organic electrolyte
journal, July 2016


Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries
journal, January 2015

  • Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.
  • Journal of Materials Chemistry A, Vol. 3, Issue 15
  • DOI: 10.1039/C4TA06622G

Multi-redox Molecule for High-Energy Redox Flow Batteries
journal, September 2018


Two electron utilization of methyl viologen anolyte in nonaqueous organic redox flow battery
journal, September 2018


An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples
journal, January 2014

  • Yang, Bo; Hoober-Burkhardt, Lena; Wang, Fang
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.1001409jes

A High-Current, Stable Nonaqueous Organic Redox Flow Battery
journal, September 2016


Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage
journal, January 2017

  • Hu, Bo; DeBruler, Camden; Rhodes, Zayn
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b10984

Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery
journal, April 2015

  • Wei, Xiaoliang; Xu, Wu; Huang, Jinhua
  • Angewandte Chemie International Edition, Vol. 54, Issue 30
  • DOI: 10.1002/anie.201501443

Cycling of a Quinone-Bromide Flow Battery for Large-Scale Electrochemical Energy Storage
journal, September 2014

  • Huskinson, B.; Marshak, M. P.; Gerhardt, M. R.
  • ECS Transactions, Vol. 61, Issue 37, p. 27-30
  • DOI: 10.1149/06137.0027ecst

Redox flow cells for energy conversion
journal, September 2006

  • Ponce de Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.
  • Journal of Power Sources, Vol. 160, Issue 1, p. 716-732
  • DOI: 10.1016/j.jpowsour.2006.02.095

New strapped porphyrins as hosts for fullerenes: synthesis and complexation study
journal, January 2012

  • Giguère, Jean-Benoît; Morin, Jean-François
  • Org. Biomol. Chem., Vol. 10, Issue 5
  • DOI: 10.1039/C1OB06643A

Voltammetry of Quinones in Unbuffered Aqueous Solution: Reassessing the Roles of Proton Transfer and Hydrogen Bonding in the Aqueous Electrochemistry of Quinones
journal, October 2007

  • Quan, May; Sanchez, Daniel; Wasylkiw, Mark F.
  • Journal of the American Chemical Society, Vol. 129, Issue 42, p. 12847-12856
  • DOI: 10.1021/ja0743083

Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading
journal, September 2010


Dissection of the Voltage Losses of an Acidic Quinone Redox Flow Battery
journal, January 2017

  • Chen, Qing; Gerhardt, Michael R.; Aziz, Michael J.
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.0721706jes

Quantifying Mass Transfer Rates in Redox Flow Batteries
journal, January 2017

  • Milshtein, Jarrod D.; Tenny, Kevin M.; Barton, John L.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0201711jes

The Critical Role of Supporting Electrolyte Selection on Flow Battery Cost
journal, January 2017

  • Milshtein, Jarrod D.; Darling, Robert M.; Drake, Javit
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.1031714jes

The Effect of Interdigitated Channel and Land Dimensions on Flow Cell Performance
journal, January 2018

  • Gerhardt, Michael R.; Wong, Andrew A.; Aziz, Michael J.
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0471811jes

Micromechanics of actuation of ionic polymer-metal composites
journal, September 2002

  • Nemat-Nasser, Sia
  • Journal of Applied Physics, Vol. 92, Issue 5
  • DOI: 10.1063/1.1495888

Works referencing / citing this record:

A pH‐Neutral, Metal‐Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte
journal, November 2019

  • Hu, Bo; Luo, Jian; Hu, Maowei
  • Angewandte Chemie International Edition, Vol. 58, Issue 46
  • DOI: 10.1002/anie.201907934

Electrochemical Evaluation of a Napthalene Diimide Derivative for Potential Application in Aqueous Organic Redox Flow Batteries
journal, August 2019

  • Wiberg, Cedrik; Owusu, Francis; Wang, Ergang
  • Energy Technology, Vol. 7, Issue 11
  • DOI: 10.1002/ente.201900843

A pH‐Neutral, Metal‐Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte
journal, September 2019