skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 21, 2020

Title: Self-Generated Magnetic and Electric Fields at a Mach-6 Shock Front in a Low Density Helium Gas by Dual-Angle Proton Radiography

Abstract

Shocks are abundant both in astrophysical and laboratory systems. While the electric fields generated at shock fronts have recently attracted great attention, the associated self-generated magnetic field is rarely studied, despite its ability to significantly affect the shock profile in the nonideal geometry where density and temperature gradients are not parallel. We report here the observation of a magnetic field at the front of a Mach ~6 shock propagating in a low-density helium gas system. Proton radiography from different projection angles not only confirms the magnetic field’s existence, but also provides a quantitative measurement of the field strength in the range ~5 to 7 T. X-ray spectrometry allowed inference of the density and temperature at the shock front, constraining the plasma conditions under which the magnetic and electric fields are generated. Furthermore, simulations with the particle-in-cell code lsp attribute the self-generation of the magnetic field to the Biermann battery effect (∇n e × ∇T e).

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [2];  [3];  [3];  [3];  [2]
  1. Univ. of California, San Diego, La Jolla, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1597235
Report Number(s):
LLNL-JRNL-773469
Journal ID: ISSN 0031-9007; PRLTAO; 965755
Grant/Contract Number:  
AC52-07NA27344; SC0014600; LFR-17-449059
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 123; Journal Issue: 21; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; High-energy-density plasmas; Magnetic field generation & plasma dynamo; Shock waves & discontinuities in plasma

Citation Formats

Hua, R., Kim, J., Sherlock, M., Bailly-Grandvaux, M., Beg, F. N., McGuffey, C., Wilks, S., Wen, H., Joglekar, A., Mori, W., and Ping, Y. Self-Generated Magnetic and Electric Fields at a Mach-6 Shock Front in a Low Density Helium Gas by Dual-Angle Proton Radiography. United States: N. p., 2019. Web. doi:10.1103/PhysRevLett.123.215001.
Hua, R., Kim, J., Sherlock, M., Bailly-Grandvaux, M., Beg, F. N., McGuffey, C., Wilks, S., Wen, H., Joglekar, A., Mori, W., & Ping, Y. Self-Generated Magnetic and Electric Fields at a Mach-6 Shock Front in a Low Density Helium Gas by Dual-Angle Proton Radiography. United States. doi:10.1103/PhysRevLett.123.215001.
Hua, R., Kim, J., Sherlock, M., Bailly-Grandvaux, M., Beg, F. N., McGuffey, C., Wilks, S., Wen, H., Joglekar, A., Mori, W., and Ping, Y. Thu . "Self-Generated Magnetic and Electric Fields at a Mach-6 Shock Front in a Low Density Helium Gas by Dual-Angle Proton Radiography". United States. doi:10.1103/PhysRevLett.123.215001.
@article{osti_1597235,
title = {Self-Generated Magnetic and Electric Fields at a Mach-6 Shock Front in a Low Density Helium Gas by Dual-Angle Proton Radiography},
author = {Hua, R. and Kim, J. and Sherlock, M. and Bailly-Grandvaux, M. and Beg, F. N. and McGuffey, C. and Wilks, S. and Wen, H. and Joglekar, A. and Mori, W. and Ping, Y.},
abstractNote = {Shocks are abundant both in astrophysical and laboratory systems. While the electric fields generated at shock fronts have recently attracted great attention, the associated self-generated magnetic field is rarely studied, despite its ability to significantly affect the shock profile in the nonideal geometry where density and temperature gradients are not parallel. We report here the observation of a magnetic field at the front of a Mach ~6 shock propagating in a low-density helium gas system. Proton radiography from different projection angles not only confirms the magnetic field’s existence, but also provides a quantitative measurement of the field strength in the range ~5 to 7 T. X-ray spectrometry allowed inference of the density and temperature at the shock front, constraining the plasma conditions under which the magnetic and electric fields are generated. Furthermore, simulations with the particle-in-cell code lsp attribute the self-generation of the magnetic field to the Biermann battery effect (∇ne × ∇Te).},
doi = {10.1103/PhysRevLett.123.215001},
journal = {Physical Review Letters},
number = 21,
volume = 123,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 21, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Structure of a Plasma Shock Wave
journal, January 1964

  • Jaffrin, Michel Y.; Probstein, Ronald F.
  • Physics of Fluids, Vol. 7, Issue 10
  • DOI: 10.1063/1.1711072

Turbulent amplification of magnetic fields in laboratory laser-produced shock waves
journal, June 2014

  • Meinecke, J.; Doyle, H. W.; Miniati, F.
  • Nature Physics, Vol. 10, Issue 7
  • DOI: 10.1038/nphys2978

Shock Ignition of Thermonuclear Fuel with High Areal Density
journal, April 2007


Anomalous yield reduction in direct-drive deuterium/tritium implosions due to H3e addition
journal, May 2009

  • Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3141062

Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions
journal, January 2015


Deciphering the kinetic structure of multi-ion plasma shocks
journal, November 2017


Ion kinetic simulations of the formation and propagation of a planar collisional shock wave in a plasma
journal, September 1993

  • Vidal, F.; Matte, J. P.; Casanova, M.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 9
  • DOI: 10.1063/1.860654

Species separation and kinetic effects in collisional plasma shocks
journal, May 2014

  • Bellei, C.; Rinderknecht, H.; Zylstra, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876614

The properties and structure of a plasma non-neutral shock
journal, July 2003


Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures
journal, September 2010


Electro-diffusion in a plasma with two ion species
journal, August 2012

  • Kagan, Grigory; Tang, Xian-Zhu
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4745869

Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas
journal, March 2016


Collisionless shock experiments with lasers and observation of Weibel instabilitiesa)
journal, May 2015

  • Park, H. -S.; Huntington, C. M.; Fiuza, F.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920959

Proton Radiography of Inertial Fusion Implosions
journal, February 2008


Study of self-generated fields in strongly-shocked, low-density systems using broadband proton radiography
journal, July 2017

  • Hua, R.; Sio, H.; Wilks, S. C.
  • Applied Physics Letters, Vol. 111, Issue 3
  • DOI: 10.1063/1.4995226

The Biermann Catastrophe in Numerical Magnetohydrodynamics
journal, March 2015


Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas
journal, May 2015


Proton deflectometry of a magnetic reconnection geometry
journal, April 2010

  • Willingale, L.; Nilson, P. M.; Kaluza, M. C.
  • Physics of Plasmas, Vol. 17, Issue 4
  • DOI: 10.1063/1.3377787

Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock
journal, March 2018


Self-Generated Magnetic Fields in the Stagnation Phase of Indirect-Drive Implosions on the National Ignition Facility
journal, April 2017


Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
journal, July 2011


High-Gain Magnetized Inertial Fusion
journal, January 2012


Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion
journal, October 2014


A broadband proton backlighting platform to probe shock propagation in low-density systems
journal, January 2017

  • Sio, H.; Hua, R.; Ping, Y.
  • Review of Scientific Instruments, Vol. 88, Issue 1
  • DOI: 10.1063/1.4973893

Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

Polar-direct-drive experiments on OMEGA
journal, June 2006

  • Marshall, F. J.; Craxton, R. S.; Bonino, M. J.
  • Journal de Physique IV (Proceedings), Vol. 133
  • DOI: 10.1051/jp4:2006133029

Some practical remarks on multiple scattering
journal, November 1975


Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code
journal, October 2009


Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmas
journal, October 2010

  • Park, J.; Brown, G. V.; Schneider, M. B.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3495790

Simulation techniques for heavy ion fusion chamber transport
journal, May 2001

  • Welch, D. R.; Rose, D. V.; Oliver, B. V.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 464, Issue 1-3
  • DOI: 10.1016/S0168-9002(01)00024-9

FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes
journal, November 2000

  • Fryxell, B.; Olson, K.; Ricker, P.
  • The Astrophysical Journal Supplement Series, Vol. 131, Issue 1
  • DOI: 10.1086/317361