skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coordination changes in liquid tin under shock compression determined using in situ femtosecond x-ray diffraction

Abstract

Little is known regarding the liquid structure of materials compressed to extreme conditions, and even less is known about liquid structures undergoing rapid compression on nanosecond timescales. Here, we report on liquid structure factor and radial distribution function measurements of tin shock compressed to 84(19) GPa. High-quality, femtosecond x-ray diffraction measurements at the Linac Coherent Light Source were used to extract the liquid diffuse scattering signal. From the radial distribution function, we find that the structural evolution of the liquid with increasing pressure mimics the evolution of the solid phase. With increasing pressure, we find that the liquid structure evolves from a complex structure, with a low coordination number, to a simple liquid structure with a coordination number of ~12. We provide a pathway for future experiments to study liquids at elevated pressures using high-energy lasers to shock compress materials beyond the reach of static diamond anvil cell techniques.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [3]; ORCiD logo [4];  [5]; ORCiD logo [5];  [5];  [5]; ORCiD logo [6];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Oxford (United Kingdom)
  3. Johns Hopkins Univ., Baltimore, MD (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. The Univ. of Edinburgh (United Kingdom)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1597213
Alternate Identifier(s):
OSTI ID: 1580171
Report Number(s):
LLNL-JRNL-797485
Journal ID: ISSN 0003-6951; 986015
Grant/Contract Number:  
AC52-07NA27344; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 115; Journal Issue: 26; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Briggs, R., Gorman, M. G., Zhang, S., McGonegle, D., Coleman, A. L., Coppari, F., Morales-Silva, M. A., Smith, R. F., Wicks, J. K., Bolme, C. A., Gleason, A. E., Cunningham, E., Lee, H. J., Nagler, B., McMahon, M. I., Eggert, J. H., and Fratanduono, D. E. Coordination changes in liquid tin under shock compression determined using in situ femtosecond x-ray diffraction. United States: N. p., 2019. Web. doi:10.1063/1.5127291.
Briggs, R., Gorman, M. G., Zhang, S., McGonegle, D., Coleman, A. L., Coppari, F., Morales-Silva, M. A., Smith, R. F., Wicks, J. K., Bolme, C. A., Gleason, A. E., Cunningham, E., Lee, H. J., Nagler, B., McMahon, M. I., Eggert, J. H., & Fratanduono, D. E. Coordination changes in liquid tin under shock compression determined using in situ femtosecond x-ray diffraction. United States. doi:10.1063/1.5127291.
Briggs, R., Gorman, M. G., Zhang, S., McGonegle, D., Coleman, A. L., Coppari, F., Morales-Silva, M. A., Smith, R. F., Wicks, J. K., Bolme, C. A., Gleason, A. E., Cunningham, E., Lee, H. J., Nagler, B., McMahon, M. I., Eggert, J. H., and Fratanduono, D. E. Mon . "Coordination changes in liquid tin under shock compression determined using in situ femtosecond x-ray diffraction". United States. doi:10.1063/1.5127291. https://www.osti.gov/servlets/purl/1597213.
@article{osti_1597213,
title = {Coordination changes in liquid tin under shock compression determined using in situ femtosecond x-ray diffraction},
author = {Briggs, R. and Gorman, M. G. and Zhang, S. and McGonegle, D. and Coleman, A. L. and Coppari, F. and Morales-Silva, M. A. and Smith, R. F. and Wicks, J. K. and Bolme, C. A. and Gleason, A. E. and Cunningham, E. and Lee, H. J. and Nagler, B. and McMahon, M. I. and Eggert, J. H. and Fratanduono, D. E.},
abstractNote = {Little is known regarding the liquid structure of materials compressed to extreme conditions, and even less is known about liquid structures undergoing rapid compression on nanosecond timescales. Here, we report on liquid structure factor and radial distribution function measurements of tin shock compressed to 84(19) GPa. High-quality, femtosecond x-ray diffraction measurements at the Linac Coherent Light Source were used to extract the liquid diffuse scattering signal. From the radial distribution function, we find that the structural evolution of the liquid with increasing pressure mimics the evolution of the solid phase. With increasing pressure, we find that the liquid structure evolves from a complex structure, with a low coordination number, to a simple liquid structure with a coordination number of ~12. We provide a pathway for future experiments to study liquids at elevated pressures using high-energy lasers to shock compress materials beyond the reach of static diamond anvil cell techniques.},
doi = {10.1063/1.5127291},
journal = {Applied Physics Letters},
number = 26,
volume = 115,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Polyamorphism and liquid–liquid phase transitions: challenges for experiment and theory
journal, September 2007


Pressure dependence of the structure of liquid Sn up to 19.4 GPa
journal, September 2007


Beyond sixfold coordinated Si in SiO 2 glass at ultrahigh pressures
journal, September 2017

  • Prescher, Clemens; Prakapenka, Vitali B.; Stefanski, Johannes
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 38
  • DOI: 10.1073/pnas.1708882114

Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa
journal, January 2017


Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature
journal, June 2014

  • Sellberg, J. A.; Huang, C.; McQueen, T. A.
  • Nature, Vol. 510, Issue 7505
  • DOI: 10.1038/nature13266

Powder diffraction from solids in the terapascal regime
journal, November 2012

  • Rygg, J. R.; Eggert, J. H.; Lazicki, A. E.
  • Review of Scientific Instruments, Vol. 83, Issue 11
  • DOI: 10.1063/1.4766464

Shock-Wave Compressions of Twenty-Seven Metals. Equations of State of Metals
journal, October 1957

  • Walsh, John M.; Rice, Melvin H.; McQueen, Robert G.
  • Physical Review, Vol. 108, Issue 2
  • DOI: 10.1103/PhysRev.108.196

Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth
journal, November 2018


X-Ray Diffraction of Solid Tin to 1.2 TPa
journal, August 2015


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


High Melting Points of Tantalum in a Laser-Heated Diamond Anvil Cell
journal, June 2010


High-pressure in situ structure measurement of low-Z noncrystalline materials with a diamond-anvil cell by an x-ray diffraction method
journal, April 2010

  • Sato, Tomoko; Funamori, Nobumasa; Kikegawa, Takumi
  • Review of Scientific Instruments, Vol. 81, Issue 4
  • DOI: 10.1063/1.3361037

Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source
journal, October 2017

  • Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna
  • Review of Scientific Instruments, Vol. 88, Issue 10
  • DOI: 10.1063/1.4997756

Simulational analysis of the local structure in liquid germanium under pressure
journal, August 2002


A first-order liquid–liquid phase transition in phosphorus
journal, January 2000

  • Katayama, Yoshinori; Mizutani, Takeshi; Utsumi, Wataru
  • Nature, Vol. 403, Issue 6766
  • DOI: 10.1038/35003143

Structural change in molten basalt at deep mantle conditions
journal, November 2013

  • Sanloup, Chrystèle; Drewitt, James W. E.; Konôpková, Zuzana
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12668

Ab initio molecular dynamics simulations of the static, dynamic, and electronic properties of liquid Pb using real-space pseudopotentials
journal, December 2007


Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements
journal, October 2008

  • Hu, Jianbo; Zhou, Xianming; Dai, Chengda
  • Journal of Applied Physics, Vol. 104, Issue 8
  • DOI: 10.1063/1.3003325

Density measurements and structural properties of liquid and amorphous metals under high pressure
journal, November 2013


Melting Curve and Liquid Structure of Nitrogen Probed by X-ray Diffraction to 120 GPa
journal, December 2017


Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures
journal, September 2013

  • Coppari, F.; Smith, R. F.; Eggert, J. H.
  • Nature Geoscience, Vol. 6, Issue 11
  • DOI: 10.1038/ngeo1948

Equation of State for Nineteen Metallic Elements from Shock‐Wave Measurements to Two Megabars
journal, July 1960

  • McQueen, R. G.; Marsh, S. P.
  • Journal of Applied Physics, Vol. 31, Issue 7
  • DOI: 10.1063/1.1735815

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Improved tetrahedron method for Brillouin-zone integrations
journal, June 1994


Refractive index of lithium fluoride to 900 gigapascal and implications for dynamic equation of state measurements
journal, May 2019

  • Kirsch, L. E.; Ali, S. J.; Fratanduono, D. E.
  • Journal of Applied Physics, Vol. 125, Issue 17
  • DOI: 10.1063/1.5091722

Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility
journal, July 2014

  • Rigg, P. A.; Knudson, M. D.; Scharff, R. J.
  • Journal of Applied Physics, Vol. 116, Issue 3
  • DOI: 10.1063/1.4890714

Structure of Liquid Iron at Pressures up to 58 GPa
journal, May 2004