DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials

Abstract

The lithium-excess manganese oxides are a candidate cathode material for the next generation of Li-ion batteries because of their ability to reversibly intercalate more Li than traditional cathode materials. Although reversible oxidation of lattice oxygen has been proposed as the origin of this anomalous excess capacity, questions about the underlying electrochemical reaction mechanisms remain unresolved. In this work, we critically analyse the O2-/O- oxygen redox hypothesis and explore alternative explanations for the origin of the anomalous capacity, including the formation of peroxide ions or trapped oxygen molecules and the oxidation of Mn. First-principles calculations motivated by the Li–Mn–O phase diagram show that the electrochemical behaviour of the Li-excess manganese oxides is thermodynamically consistent with the oxidation of Mn from the +4 oxidation state to the +7 oxidation state and the concomitant migration of Mn from octahedral sites to tetrahedral sites. Finally, it is shown that the Mn oxidation hypothesis can explain the poorly understood electrochemical behaviour of Li-excess materials, including the activation step, the voltage hysteresis and voltage fade.

Authors:
 [1]; ORCiD logo [1];  [1];  [1]
  1. Univ. of California, Santa Barbara, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES). Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR); Binghamton Univ., NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1597014
Grant/Contract Number:  
SC0012583; SC0019381; AC02-05CH11231; DMR-1720256; CNS-1725797
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 4; Journal Issue: 8; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Radin, Maxwell D., Vinckeviciute, Julija, Seshadri, Ram, and Van der Ven, Anton. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. United States: N. p., 2019. Web. doi:10.1038/s41560-019-0439-6.
Radin, Maxwell D., Vinckeviciute, Julija, Seshadri, Ram, & Van der Ven, Anton. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. United States. https://doi.org/10.1038/s41560-019-0439-6
Radin, Maxwell D., Vinckeviciute, Julija, Seshadri, Ram, and Van der Ven, Anton. Mon . "Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials". United States. https://doi.org/10.1038/s41560-019-0439-6. https://www.osti.gov/servlets/purl/1597014.
@article{osti_1597014,
title = {Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials},
author = {Radin, Maxwell D. and Vinckeviciute, Julija and Seshadri, Ram and Van der Ven, Anton},
abstractNote = {The lithium-excess manganese oxides are a candidate cathode material for the next generation of Li-ion batteries because of their ability to reversibly intercalate more Li than traditional cathode materials. Although reversible oxidation of lattice oxygen has been proposed as the origin of this anomalous excess capacity, questions about the underlying electrochemical reaction mechanisms remain unresolved. In this work, we critically analyse the O2-/O- oxygen redox hypothesis and explore alternative explanations for the origin of the anomalous capacity, including the formation of peroxide ions or trapped oxygen molecules and the oxidation of Mn. First-principles calculations motivated by the Li–Mn–O phase diagram show that the electrochemical behaviour of the Li-excess manganese oxides is thermodynamically consistent with the oxidation of Mn from the +4 oxidation state to the +7 oxidation state and the concomitant migration of Mn from octahedral sites to tetrahedral sites. Finally, it is shown that the Mn oxidation hypothesis can explain the poorly understood electrochemical behaviour of Li-excess materials, including the activation step, the voltage hysteresis and voltage fade.},
doi = {10.1038/s41560-019-0439-6},
journal = {Nature Energy},
number = 8,
volume = 4,
place = {United States},
year = {Mon Jul 29 00:00:00 EDT 2019},
month = {Mon Jul 29 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 130 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Comparison of the first-charge voltage curves of pure Li2MnO3 and Li2MnO3/LiMO2 composites. a, the first-charge voltage curves for Li2MnO3/LiMO2 composites. b, the portion of the first-charge voltage curves arising from the Li2MnO3 component of Li2MnO3/LiMO2 composites. The shaded region in (b) highlights that the plateau ends when approximatelymore » 1.5 Li have been removed. Data for Li1.20Ni0.20Mn0.60O2, and Li1.14Ni0.29Mn0.57O2 from Ref. 67; data for Li1.23Co0.30Mn0.47O2 and Li2MnO3 from Refs. 6 and 11.« less

Save / Share:

Works referenced in this record:

Review—Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries
journal, January 2015

  • Hong, Jihyun; Gwon, Hyeokjo; Jung, Sung-Kyun
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0071514jes

Molecular Orbital Principles of Oxygen-Redox Battery Electrodes
journal, October 2017

  • Okubo, Masashi; Yamada, Atsuo
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 42
  • DOI: 10.1021/acsami.7b09835

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Structure of Lithium Peroxide
journal, September 2011

  • Chan, Maria K. Y.; Shirley, Eric L.; Karan, Naba K.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 19
  • DOI: 10.1021/jz201072b

Direct Visualization of the Reversible O 2− /O Redox Process in Li-Rich Cathode Materials
journal, February 2018


Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3
journal, February 2017

  • Pearce, Paul E.; Perez, Arnaud J.; Rousse, Gwenaelle
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4864

Unified picture of anionic redox in Li/Na-ion batteries
journal, March 2019


Projector augmented-wave method
journal, December 1994


Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2
journal, June 2006

  • Armstrong, A. Robert; Holzapfel, Michael; Novák, Petr
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja062027+

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction
journal, April 2020


Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na 2/3 Mn 1− y Zn y O 2 (0 < y < 0.23)
journal, October 2018

  • Bai, Xue; Sathiya, Mariyappan; Mendoza-Sánchez, Beatriz
  • Advanced Energy Materials, Vol. 8, Issue 32
  • DOI: 10.1002/aenm.201802379

Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries
journal, January 2016

  • Hy, Sunny; Liu, Haodong; Zhang, Minghao
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03573B

High-resolution parallel electron energy-loss spectroscopy of Mn L2,3-edges in inorganic manganese compounds
journal, August 1994

  • Garvie, L. A. J.; Craven, A. J.
  • Physics and Chemistry of Minerals, Vol. 21, Issue 4
  • DOI: 10.1007/BF00202132

What can we learn about battery materials from their magnetic properties?
journal, January 2011

  • Chernova, Natasha A.; Nolis, Gene M.; Omenya, Fredrick O.
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c1jm00024a

Covalency in Metal–Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory
journal, January 2013

  • Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.
  • Journal of the American Chemical Society, Vol. 135, Issue 5
  • DOI: 10.1021/ja310223b

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2
journal, January 2018

  • Maitra, Urmimala; House, Robert A.; Somerville, James W.
  • Nature Chemistry, Vol. 10, Issue 3
  • DOI: 10.1038/nchem.2923

Electrochemical kinetics and cycling performance of nano Li[Li0.23Co0.3Mn0.47]O2 cathode material for lithium ion batteries
journal, October 2009


Overcharging manganese oxides: Extracting lithium beyond Mn4+
journal, August 2005


Low-energy description of the metal-insulator transition in the rare-earth nickelates
journal, February 2015


Mechanism of Electrochemical Activity in Li2MnO3.
journal, August 2003


First-principles investigation of phase stability in Li x CoO 2
journal, August 1998


Oxygen Nonstoichiometry in Li 2 MnO 3 :  An Alternative Explanation for Its Anomalous Electrochemical Activity
journal, January 2005

  • Pasero, D.; McLaren, V.; de Souza, S.
  • Chemistry of Materials, Vol. 17, Issue 2
  • DOI: 10.1021/cm040186r

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density
journal, January 2013

  • Bettge, Martin; Li, Yan; Gallagher, Kevin
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.034311jes

Mechanism of Electrochemical Activity in Li 2 MnO 3
journal, May 2003

  • Robertson, Alastair D.; Bruce, Peter G.
  • Chemistry of Materials, Vol. 15, Issue 10
  • DOI: 10.1021/cm030047u

High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4 -based system with cation-disordered rocksalt structure
journal, June 2015

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 25
  • DOI: 10.1073/pnas.1504901112

Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds
journal, August 2010


Exploring reversible oxidation of oxygen in a manganese oxide
journal, January 2016

  • Du, Ke; Zhu, Jinyou; Hu, Guorong
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE01367H

Reversible anionic redox activity in Na 3 RuO 4 cathodes: a prototype Na-rich layered oxide
journal, January 2018

  • Qiao, Yu; Guo, Shaohua; Zhu, Kai
  • Energy & Environmental Science, Vol. 11, Issue 2
  • DOI: 10.1039/C7EE03554C

Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides
journal, January 2015

  • Rinaldo, Steven G.; Gallagher, Kevin G.; Long, Brandon R.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0181506jes

In Situ X-Ray Absorption Study of a Layered Manganese-Chromium Oxide-Based Cathode Material
journal, January 2002

  • Balasubramanian, M.; McBreen, J.; Davidson, I. J.
  • Journal of The Electrochemical Society, Vol. 149, Issue 2
  • DOI: 10.1149/1.1431962

High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1
journal, January 2011

  • Ohzuku, Tsutomu; Nagayama, Masatoshi; Tsuji, Kyoji
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04325g

Designing the next generation high capacity battery electrodes
journal, January 2014

  • Yu, H. -C.; Ling, C.; Bhattacharya, J.
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee43154a

Characteristics of Li2TiO3–LiCrO2 composite cathode powders prepared by ultrasonic spray pyrolysis
journal, December 2013


First-principles study on lithium removal from Li2MnO3
journal, April 2009


Spectroscopic Signature of Oxidized Oxygen States in Peroxides
journal, October 2018

  • Zhuo, Zengqing; Pemmaraju, Chaitanya Das; Vinson, John
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 21
  • DOI: 10.1021/acs.jpclett.8b02757

Understanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-Ion Batteries
journal, January 2017


Anionic Redox in Rechargeable Lithium Batteries
journal, June 2017


Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2
journal, August 2013


Origin of High Capacity and Poor Cycling Stability of Li-Rich Layered Oxides: A Long-Duration in Situ Synchrotron Powder Diffraction Study
journal, May 2018


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Manganese oxides for lithium batteries
journal, January 1997


Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides
journal, February 2019


Vision for Designing High-Energy, Hybrid Li Ion/Li–O 2 Cells
journal, October 2013

  • Thackeray, Michael M.; Chan, Maria K. Y.; Trahey, Lynn
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 21
  • DOI: 10.1021/jz4018464

Electronic structure of AlFeN films exhibiting crystallographic orientation change from c- to a-axis with Fe concentrations and annealing effect
journal, February 2020


Synthesis, Structure, and Electrochemical Behavior of Li[Ni[sub x]Li[sub 1/3−2x/3]Mn[sub 2/3−x/3]]O[sub 2]
journal, January 2002

  • Lu, Zhonghua; Beaulieu, L. Y.; Donaberger, R. A.
  • Journal of The Electrochemical Society, Vol. 149, Issue 6
  • DOI: 10.1149/1.1471541

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Operando X-ray Absorption Study of the Redox Processes Involved upon Cycling of the Li-Rich Layered Oxide Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 in Li Ion Batteries
journal, March 2014

  • Koga, H.; Croguennec, L.; Ménétrier, M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp412197z

Lithium Extraction Mechanism in Li-Rich Li 2 MnO 3 Involving Oxygen Hole Formation and Dimerization
journal, September 2016


Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
journal, July 2017

  • Radin, Maxwell D.; Hy, Sunny; Sina, Mahsa
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201602888

Mn L 2,3 -edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li 2 MnO 3
journal, February 2014

  • Kubobuchi, Kei; Mogi, Masato; Ikeno, Hidekazu
  • Applied Physics Letters, Vol. 104, Issue 5
  • DOI: 10.1063/1.4864167

Distinction between Intrinsic and X-ray-Induced Oxidized Oxygen States in Li-Rich 3d Layered Oxides and LiAlO 2
journal, May 2019

  • Lebens-Higgins, Zachary W.; Vinckeviciute, Julija; Wu, Jinpeng
  • The Journal of Physical Chemistry C, Vol. 123, Issue 21
  • DOI: 10.1021/acs.jpcc.9b01298

Elucidating anionic oxygen activity in lithium-rich layered oxides
journal, March 2018


Spectroscopic Signature of Oxidized Oxygen States in Peroxides
text, January 2018


Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

Doping a Mott insulator: Physics of high-temperature superconductivity
journal, January 2006

  • Lee, Patrick A.; Nagaosa, Naoto; Wen, Xiao-Gang
  • Reviews of Modern Physics, Vol. 78, Issue 1
  • DOI: 10.1103/RevModPhys.78.17

Koordinationszahl 4 oder 6 f�r Lithium??: Die Kristallstruktur von wasserfreiem Lithiumpermanganat, Li[MnO4]
journal, August 1993

  • Fischer, D.; Hoppe, R.; Sch�fer, W.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 619, Issue 8
  • DOI: 10.1002/zaac.19936190817

Improved tetrahedron method for Brillouin-zone integrations
journal, June 1994


Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: x Li 2 MnO 3 ·(1 − x )LiMn 0.333 Ni 0.333 Co 0.333 O 2 (0 ≤ x ≤ 0.7)
journal, October 2008

  • Johnson, Christopher S.; Li, Naichao; Lefief, Christina
  • Chemistry of Materials, Vol. 20, Issue 19
  • DOI: 10.1021/cm801245r

A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials
journal, February 2007

  • Wang, L.; Maxisch, T.; Ceder, G.
  • Chemistry of Materials, Vol. 19, Issue 3
  • DOI: 10.1021/cm0620943

Highly Reversible Oxygen-Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)
journal, April 2018

  • Mortemard de Boisse, Benoit; Nishimura, Shin-ichi; Watanabe, Eriko
  • Advanced Energy Materials, Vol. 8, Issue 20
  • DOI: 10.1002/aenm.201800409

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes
journal, October 2012


Structural Changes in Li 2 MnO 3 Cathode Material for Li-Ion Batteries
journal, December 2013

  • Rana, Jatinkumar; Stan, Marian; Kloepsch, Richard
  • Advanced Energy Materials, Vol. 4, Issue 5
  • DOI: 10.1002/aenm.201300998

The Role of Oxygen Release from Li- and Mn-Rich Layered Oxides during the First Cycles Investigated by On-Line Electrochemical Mass Spectrometry
journal, December 2016

  • Strehle, Benjamin; Kleiner, Karin; Jung, Roland
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1001702jes

A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses
journal, July 2008

  • Chalmin, E.; Farges, F.; Brown, G. E.
  • Contributions to Mineralogy and Petrology, Vol. 157, Issue 1
  • DOI: 10.1007/s00410-008-0323-z

Ambivalent Effect of Oxygen Vacancies on Li 2 MnO 3 : A First-Principles Study
journal, January 2011

  • Okamoto, Yasuharu
  • Journal of The Electrochemical Society, Vol. 159, Issue 2
  • DOI: 10.1149/2.079202jes

Resonant X-Ray Emission Spectroscopy of Molecular Oxygen
journal, April 1996


Anionic redox processes for electrochemical devices
journal, January 2016

  • Grimaud, A.; Hong, W. T.; Shao-Horn, Y.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4551

The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries
journal, January 2016

  • Saubanère, M.; McCalla, E.; Tarascon, J. -M.
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE03048J

Thermodynamic limit for synthesis of metastable inorganic materials
journal, April 2018

  • Aykol, Muratahan; Dwaraknath, Shyam S.; Sun, Wenhao
  • Science Advances, Vol. 4, Issue 4
  • DOI: 10.1126/sciadv.aaq0148

A Critical Review of the Li Insertion Mechanisms in LiFePO 4 Electrodes
journal, January 2013

  • Malik, Rahul; Abdellahi, Aziz; Ceder, Gerbrand
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.029305jes

Local Structure and First Cycle Redox Mechanism of Layered Li[sub 1.2]Cr[sub 0.4]Mn[sub 0.4]O[sub 2] Cathode Material
journal, January 2002

  • Ammundsen, Brett; Paulsen, Jens; Davidson, Isobel
  • Journal of The Electrochemical Society, Vol. 149, Issue 4
  • DOI: 10.1149/1.1456535

The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes
journal, October 2004


Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2
journal, January 2013

  • Zheng, Jianming; Shi, Wei; Gu, Meng
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.090311jes

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

High-resolution X-ray luminescence extension imaging
journal, February 2021


Structural and Chemical Evolution of the Layered Li-Excess Li x MnO 3 as a Function of Li Content from First-Principles Calculations
journal, June 2014


Energetics of MnO 2 polymorphs in density functional theory
journal, January 2016


Rotating Raman Sample Technique for Colored Crystal Powders; Resonance Raman Effect in Solid KMnO 4
journal, November 1971


Smoky coloration of quartz caused by bound small hole polaron optical absorption
journal, January 1976


Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries
journal, December 2015


First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes
journal, January 2019

  • Bercx, Marnik; Slap, Levi; Partoens, Bart
  • MRS Advances, Vol. 4, Issue 14
  • DOI: 10.1557/adv.2019.135

Lithium metal rechargeable cells using Li2MnO3 as the positive electrode
journal, July 1999


In Situ and Ex Situ XRD Investigation of Li[Cr[sub x]Li[sub 1/3−x/3]Mn[sub 2/3−2x/3]]O[sub 2] (x=1/3) Cathode Material
journal, January 2003

  • Lu, Zhonghua; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 150, Issue 8
  • DOI: 10.1149/1.1584439

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

A new electrode material for rechargeable sodium batteries: P2-type Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 with anomalously high reversible capacity
journal, January 2014

  • Yabuuchi, Naoaki; Hara, Ryo; Kubota, Kei
  • J. Mater. Chem. A, Vol. 2, Issue 40
  • DOI: 10.1039/C4TA04351K

First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in Li x CoO 2
journal, July 1998


Influence of the exchange screening parameter on the performance of screened hybrid functionals
journal, December 2006

  • Krukau, Aliaksandr V.; Vydrov, Oleg A.; Izmaylov, Artur F.
  • The Journal of Chemical Physics, Vol. 125, Issue 22
  • DOI: 10.1063/1.2404663

Zur Kenntnis der NaCl-Strukturfamilie: Neue Untersuchungen an Li2MnO3
journal, April 1973

  • Jansen, M.; Hoppe, R.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 397, Issue 3
  • DOI: 10.1002/zaac.19733970307

Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
journal, February 2008

  • Ong, Shyue Ping; Wang, Lei; Kang, Byoungwoo
  • Chemistry of Materials, Vol. 20, Issue 5
  • DOI: 10.1021/cm702327g

Infrared spectra of tetrahedral oxyanions of the transition metals
journal, January 1966

  • Griffith, W. P.
  • Journal of the Chemical Society A: Inorganic, Physical, Theoretical
  • DOI: 10.1039/j19660001467

Synthesis and Electrochemical Characteristics of Li[Co[sub x]Li[sub (1/3−x/3)]Mn[sub (2/3−2x/3)]]O[sub 2] Compounds
journal, January 2004

  • Park, Yong Joon; Hong, Young-Sik; Wu, Xianglan
  • Journal of The Electrochemical Society, Vol. 151, Issue 5
  • DOI: 10.1149/1.1690781

Formation enthalpies by mixing GGA and GGA + U calculations
journal, July 2011


Raman Microscopy of Lithium-Manganese-Rich Transition Metal Oxide Cathodes
journal, November 2014

  • Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.0361501jes

Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides
journal, December 2017


A close look at dose: Toward L-edge XAS spectral uniformity, dose quantification and prediction of metal ion photoreduction
journal, January 2015


Electrochemical Activities in Li[sub 2]MnO[sub 3]
journal, January 2009

  • Yu, Denis Y. W.; Yanagida, Katsunori; Kato, Yoshio
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3110803

Mechanisms Associated with the “Plateau” Observed at High Voltage for the Overlithiated Li 1.12 (Ni 0.425 Mn 0.425 Co 0.15 ) 0.88 O 2 System
journal, August 2008

  • Tran, N.; Croguennec, L.; Ménétrier, M.
  • Chemistry of Materials, Vol. 20, Issue 15
  • DOI: 10.1021/cm070435m

Zum thermischen Verhalten von Li3MnO4 I. [1]. �ber ?- und ?-Li3MnO4
journal, August 1976

  • Meyer, H.; Hoppe, R.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 424, Issue 3
  • DOI: 10.1002/zaac.19764240308

Works referencing / citing this record:

Enhanced electrochemical performance of Li1.18Ni0.15Co0.15Mn0.52O2 cathode modified with aluminosilicate solid acid
journal, November 2019

  • Hu, Fang; Zhang, Dongxu; Cui, Fuhan
  • Journal of Materials Science: Materials in Electronics, Vol. 30, Issue 24
  • DOI: 10.1007/s10854-019-02497-1

Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2
journal, March 2020


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.