skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying the Capacity Contributions during Activation of Li2MnO3

Abstract

Though Li2MnO3 was originally considered to be electrochemically inert, its observed activation has spawned a new class of Li-rich layered compounds that deliver capacities beyond the traditional transition-metal redox limit. Despite progress in our understanding of oxygen redox in Li-rich compounds, the underlying origin of the initial charge capacity of Li2MnO3 remains hotly contested. To resolve this issue, we review all possible charge compensation mechanisms including bulk oxygen redox, oxidation of Mn4+, and surface degradation for Li2MnO3 cathodes displaying capacities exceeding 350 mAh g–1. Using elemental and orbital selective X-ray spectroscopy techniques, we rule out oxidation of Mn4+ and bulk oxygen redox during activation of Li2MnO3. Quantitative gas-evolution and titration studies reveal that O2 and CO2 release accounted for a large fraction of the observed capacity during activation with minor contributions from reduced Mn species on the surface. Lastly, these studies reveal that, although Li2MnO3 is considered critical for promoting bulk anionic redox in Li-rich layered oxides, Li2MnO3 by itself does not exhibit bulk oxygen redox or manganese oxidation beyond its initial Mn4+ valence.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1];  [1];  [2];  [3];  [4];  [5];  [3]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [1]
  1. Binghamton Univ., NY (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Binghamton Univ., NY (United States). NorthEast Center for Chemical Energy Storage (NECCES)
  4. Univ. of Muenster (Germany). MEET Battery Research Center, Institute of Physical Chemistry
  5. Helmholtz-Institute Muenster (Germany)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES); Binghamton Univ., NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1596994
Grant/Contract Number:  
SC0012583; AC02-05CH11231; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 5; Journal Issue: 2; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Rana, Jatinkumar, Papp, Joseph K., Lebens-Higgins, Zachary, Zuba, Mateusz, Kaufman, Lori A., Goel, Anshika, Schmuch, Richard, Winter, Martin, Whittingham, M. Stanley, Yang, Wanli, McCloskey, Bryan D., and Piper, Louis F. J. Quantifying the Capacity Contributions during Activation of Li2MnO3. United States: N. p., 2020. Web. doi:10.1021/acsenergylett.9b02799.
Rana, Jatinkumar, Papp, Joseph K., Lebens-Higgins, Zachary, Zuba, Mateusz, Kaufman, Lori A., Goel, Anshika, Schmuch, Richard, Winter, Martin, Whittingham, M. Stanley, Yang, Wanli, McCloskey, Bryan D., & Piper, Louis F. J. Quantifying the Capacity Contributions during Activation of Li2MnO3. United States. doi:https://doi.org/10.1021/acsenergylett.9b02799
Rana, Jatinkumar, Papp, Joseph K., Lebens-Higgins, Zachary, Zuba, Mateusz, Kaufman, Lori A., Goel, Anshika, Schmuch, Richard, Winter, Martin, Whittingham, M. Stanley, Yang, Wanli, McCloskey, Bryan D., and Piper, Louis F. J. Mon . "Quantifying the Capacity Contributions during Activation of Li2MnO3". United States. doi:https://doi.org/10.1021/acsenergylett.9b02799. https://www.osti.gov/servlets/purl/1596994.
@article{osti_1596994,
title = {Quantifying the Capacity Contributions during Activation of Li2MnO3},
author = {Rana, Jatinkumar and Papp, Joseph K. and Lebens-Higgins, Zachary and Zuba, Mateusz and Kaufman, Lori A. and Goel, Anshika and Schmuch, Richard and Winter, Martin and Whittingham, M. Stanley and Yang, Wanli and McCloskey, Bryan D. and Piper, Louis F. J.},
abstractNote = {Though Li2MnO3 was originally considered to be electrochemically inert, its observed activation has spawned a new class of Li-rich layered compounds that deliver capacities beyond the traditional transition-metal redox limit. Despite progress in our understanding of oxygen redox in Li-rich compounds, the underlying origin of the initial charge capacity of Li2MnO3 remains hotly contested. To resolve this issue, we review all possible charge compensation mechanisms including bulk oxygen redox, oxidation of Mn4+, and surface degradation for Li2MnO3 cathodes displaying capacities exceeding 350 mAh g–1. Using elemental and orbital selective X-ray spectroscopy techniques, we rule out oxidation of Mn4+ and bulk oxygen redox during activation of Li2MnO3. Quantitative gas-evolution and titration studies reveal that O2 and CO2 release accounted for a large fraction of the observed capacity during activation with minor contributions from reduced Mn species on the surface. Lastly, these studies reveal that, although Li2MnO3 is considered critical for promoting bulk anionic redox in Li-rich layered oxides, Li2MnO3 by itself does not exhibit bulk oxygen redox or manganese oxidation beyond its initial Mn4+ valence.},
doi = {10.1021/acsenergylett.9b02799},
journal = {ACS Energy Letters},
number = 2,
volume = 5,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Manganese oxides for lithium batteries
journal, January 1997


Lithium metal rechargeable cells using Li2MnO3 as the positive electrode
journal, July 1999


Mechanism of Electrochemical Activity in Li 2 MnO 3
journal, May 2003

  • Robertson, Alastair D.; Bruce, Peter G.
  • Chemistry of Materials, Vol. 15, Issue 10
  • DOI: 10.1021/cm030047u

Electrochemical Activities in Li[sub 2]MnO[sub 3]
journal, January 2009

  • Yu, Denis Y. W.; Yanagida, Katsunori; Kato, Yoshio
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3110803

Structural Changes in Li 2 MnO 3 Cathode Material for Li-Ion Batteries
journal, December 2013

  • Rana, Jatinkumar; Stan, Marian; Kloepsch, Richard
  • Advanced Energy Materials, Vol. 4, Issue 5
  • DOI: 10.1002/aenm.201300998

Phase Transitions in Li2MnO3 Electrodes at Various States-of-Charge
journal, March 2014


Solid State NMR Studies of Li 2 MnO 3 and Li-Rich Cathode Materials: Proton Insertion, Local Structure, and Voltage Fade
journal, November 2014

  • Dogan, Fulya; Croy, Jason R.; Balasubramanian, Mahalingam
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.1041501jes

Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes
journal, October 2012


On the Localized Nature of the Structural Transformations of Li 2 MnO 3 Following Electrochemical Cycling
journal, September 2015

  • Phillips, Patrick J.; Bareño, Javier; Li, Yan
  • Advanced Energy Materials, Vol. 5, Issue 23
  • DOI: 10.1002/aenm.201501252

First-Cycle Evolution of Local Structure in Electrochemically Activated Li 2 MnO 3
journal, December 2014

  • Croy, Jason R.; Park, Joong Sun; Dogan, Fulya
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm5039792

Electrochemical and Structural Properties of xLi2M‘O3 ·(1− x )LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3)
journal, May 2004

  • Kim, Jeom-Soo; Johnson, Christopher S.; Vaughey, John T.
  • Chemistry of Materials, Vol. 16, Issue 10, p. 1996-2006
  • DOI: 10.1021/cm0306461

The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes
journal, October 2004


Lithium Extraction Mechanism in Li-Rich Li 2 MnO 3 Involving Oxygen Hole Formation and Dimerization
journal, September 2016


The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Probing the Degradation Mechanism of Li 2 MnO 3 Cathode for Li-Ion Batteries
journal, January 2015

  • Yan, Pengfei; Xiao, Liang; Zheng, Jianming
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm504257m

Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C
journal, April 2007

  • Johnson, Christopher S.; Li, Naichao; Lefief, Christina
  • Electrochemistry Communications, Vol. 9, Issue 4, p. 787-795
  • DOI: 10.1016/j.elecom.2006.11.006

Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

On the structural integrity and electrochemical activity of a 0.5Li2MnO3·0.5LiCoO2 cathode material for lithium-ion batteries
journal, January 2014

  • Rana, Jatinkumar; Kloepsch, Richard; Li, Jie
  • Journal of Materials Chemistry A, Vol. 2, Issue 24
  • DOI: 10.1039/c4ta01161a

Structural Changes in a Li-Rich 0.5Li 2 MnO 3 * 0.5LiMn 0.4 Ni 0.4 Co 0.2 O 2 Cathode Material for Li-Ion Batteries: A Local Perspective
journal, January 2016

  • Rana, Jatinkumar; Kloepsch, Richard; Li, Jie
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0211606jes

Oxygen Release and Surface Degradation of Li- and Mn-Rich Layered Oxides in Variation of the Li 2 MnO 3 Content
journal, January 2018

  • Teufl, Tobias; Strehle, Benjamin; Müller, Philipp
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0691811jes

Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials
journal, July 2019


Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries
journal, July 2016

  • Qiu, Bao; Zhang, Minghao; Wu, Lijun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12108

Synthesis of Li-Rich NMC: A Comprehensive Study
journal, November 2017


Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides
journal, December 2017


Elucidating anionic oxygen activity in lithium-rich layered oxides
journal, March 2018


Distinction between Intrinsic and X-ray-Induced Oxidized Oxygen States in Li-Rich 3d Layered Oxides and LiAlO 2
journal, May 2019

  • Lebens-Higgins, Zachary W.; Vinckeviciute, Julija; Wu, Jinpeng
  • The Journal of Physical Chemistry C, Vol. 123, Issue 21
  • DOI: 10.1021/acs.jpcc.9b01298

Excess Lithium in Transition Metal Layers of Epitaxially Grown Thin Film Cathodes of Li 2 MnO 3 Leads to Rapid Loss of Covalency during First Battery Cycle
journal, November 2019

  • Massel, Felix; Hikima, Kazuhiro; Rensmo, Håkan
  • The Journal of Physical Chemistry C, Vol. 123, Issue 47
  • DOI: 10.1021/acs.jpcc.9b06246

Revisiting the charge compensation mechanisms in LiNi 0.8 Co 0.2−y Al y O 2 systems
journal, January 2019

  • Lebens-Higgins, Zachary W.; Faenza, Nicholas V.; Radin, Maxwell D.
  • Materials Horizons, Vol. 6, Issue 10
  • DOI: 10.1039/C9MH00765B

Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode
journal, October 2019


Crystallographic and magnetic structure of Li2MnO3
journal, July 1988


Structure of Li2MnO3 with different degrees of defects
journal, January 2010


Quantum many-body effects in x-ray spectra efficiently computed using a basic graph algorithm
journal, May 2018


Quantification of Surface Oxygen Depletion and Solid Carbonate Evolution on the First Cycle of LiNi 0.6 Mn 0.2 Co 0.2 O 2 Electrodes
journal, April 2019

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • ACS Applied Energy Materials, Vol. 2, Issue 5
  • DOI: 10.1021/acsaem.9b00459

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Isotope effects in the bonds of α-CrOOH and α-CrOOD
journal, August 1977


Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries
journal, October 2018


Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer
journal, August 2017


Evolution of the Electrode–Electrolyte Interface of LiNi 0.8 Co 0.15 Al 0.05 O 2 Electrodes Due to Electrochemical and Thermal Stress
journal, January 2018


The cathode–electrolyte interface in the Li-ion battery
journal, November 2004


The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries
journal, January 2009

  • El Ouatani, L.; Dedryvère, R.; Siret, C.
  • Journal of The Electrochemical Society, Vol. 156, Issue 2
  • DOI: 10.1149/1.3029674

Electron Transfer Mechanisms upon Lithium Deintercalation from LiCoO 2 to CoO 2 Investigated by XPS
journal, January 2008

  • Dahéron, L.; Dedryvère, R.; Martinez, H.
  • Chemistry of Materials, Vol. 20, Issue 2
  • DOI: 10.1021/cm702546s

Surface Reactivity of Li 2 MnO 3 : First-Principles and Experimental Study
journal, December 2017

  • Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 50
  • DOI: 10.1021/acsami.7b14826

The origin of electrochemical activity in Li2MnO3
journal, October 2002

  • Robertson, Alastair D.; Bruce, Peter G.
  • Chemical Communications, Issue 23
  • DOI: 10.1039/b207945c

Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V
journal, June 2019


Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries
journal, December 2015


Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries
journal, January 2017

  • Xie, Y.; Saubanère, M.; Doublet, M. -L.
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE02328B

Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides
journal, January 2020