DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lattice hardening due to vacancy diffusion in (GeTe)mSb2Te3 alloys

Abstract

GeTe-Sb 2 Te 3 alloys have been widely studied for use in rewritable media, and in recent years, they have emerged as excellent thermoelectric materials, with reports of zT>2 for Ge-rich compositions. GeTe-Sb 2 Te 3 alloys exhibit a solid-state phase transition from a layered structure with rhombohedral symmetry to a cubic rocksalt structure, which plays an important role in their thermoelectric behavior. In this work, we investigate the impact of the phase transition on the thermal expansion and elastic moduli of (GeTe) 17 Sb 2 Te 3 using high-temperature X-ray diffraction and resonant ultrasound spectroscopy. The high-temperature elastic moduli of GeTe, Sb2Te3, and Bi 2 Te 3 were also measured for comparison. Although it is typical for materials to soften with increasing temperature due to thermal expansion, our study reveals anomalous hardening of the elastic moduli in (GeTe) 17 Sb 2 Te 3 at temperatures below the phase transition, followed by further hardening at the transition temperature. In contrast, the elastic moduli of GeTe, Sb 2 Te 3 , and Bi 2 Te 3 soften with increasing temperature. We attribute the anomalous hardening of (GeTe) 17 Sb 2 Te 3 to the gradual vacancy diffusion accompanying the transition from a layered to a cubic structure. The stiffening elastic moduli lead to increasing speed of sound, which impacts the lattice thermal conductivity by flattening the temperature dependence.

Authors:
 [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1]
  1. Michigan State Univ., East Lansing, MI (United States)
Publication Date:
Research Org.:
Michigan State Univ., East Lansing, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1596864
Alternate Identifier(s):
OSTI ID: 1545964
Grant/Contract Number:  
SC0019252; SC0001054
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 126; Journal Issue: 5; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Peng, Wanyue, Smiadak, David M., Boehlert, Michael G., Mather, Spencer, Williams, Jared B., Morelli, Donald T., and Zevalkink, Alexandra. Lattice hardening due to vacancy diffusion in (GeTe)mSb2Te3 alloys. United States: N. p., 2019. Web. doi:10.1063/1.5108659.
Peng, Wanyue, Smiadak, David M., Boehlert, Michael G., Mather, Spencer, Williams, Jared B., Morelli, Donald T., & Zevalkink, Alexandra. Lattice hardening due to vacancy diffusion in (GeTe)mSb2Te3 alloys. United States. https://doi.org/10.1063/1.5108659
Peng, Wanyue, Smiadak, David M., Boehlert, Michael G., Mather, Spencer, Williams, Jared B., Morelli, Donald T., and Zevalkink, Alexandra. Thu . "Lattice hardening due to vacancy diffusion in (GeTe)mSb2Te3 alloys". United States. https://doi.org/10.1063/1.5108659. https://www.osti.gov/servlets/purl/1596864.
@article{osti_1596864,
title = {Lattice hardening due to vacancy diffusion in (GeTe)mSb2Te3 alloys},
author = {Peng, Wanyue and Smiadak, David M. and Boehlert, Michael G. and Mather, Spencer and Williams, Jared B. and Morelli, Donald T. and Zevalkink, Alexandra},
abstractNote = {GeTe-Sb2Te3 alloys have been widely studied for use in rewritable media, and in recent years, they have emerged as excellent thermoelectric materials, with reports of zT>2 for Ge-rich compositions. GeTe-Sb2Te3 alloys exhibit a solid-state phase transition from a layered structure with rhombohedral symmetry to a cubic rocksalt structure, which plays an important role in their thermoelectric behavior. In this work, we investigate the impact of the phase transition on the thermal expansion and elastic moduli of (GeTe)17Sb2Te3 using high-temperature X-ray diffraction and resonant ultrasound spectroscopy. The high-temperature elastic moduli of GeTe, Sb2Te3, and Bi2Te3 were also measured for comparison. Although it is typical for materials to soften with increasing temperature due to thermal expansion, our study reveals anomalous hardening of the elastic moduli in (GeTe)17Sb2Te3 at temperatures below the phase transition, followed by further hardening at the transition temperature. In contrast, the elastic moduli of GeTe, Sb2Te3, and Bi2Te3 soften with increasing temperature. We attribute the anomalous hardening of (GeTe)17Sb2Te3 to the gradual vacancy diffusion accompanying the transition from a layered to a cubic structure. The stiffening elastic moduli lead to increasing speed of sound, which impacts the lattice thermal conductivity by flattening the temperature dependence.},
doi = {10.1063/1.5108659},
journal = {Journal of Applied Physics},
number = 5,
volume = 126,
place = {United States},
year = {Thu Aug 01 00:00:00 EDT 2019},
month = {Thu Aug 01 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: a) Ambient-temperature rhombohedral structure of GeTe (R3m), b) Sb2Te3 ($R\bar{3}m$), and c) (GeTe)mSb2Te3 (R3m) with m = 3 used for illustrative purposes. The cation vacancies in (GeTe)mSb2Te3 are relaxed into ordered layers, which resemble van der Waals gaps. Note that the hexagonal unit cell was employed here, withmore » the c-axis perpendicular to the layers. d) At high temperature, (GeTe)mSb2Te3 transitions to cubic symmetry with randomly distributed vacancies on the cation site. It can be visualized as stoichiometric occupancy of Ge, Sb, and vacancies on the cation site, while 100% of Te on the anion site.« less

Save / Share:

Works referenced in this record:

High-temperature elastic moduli of thermoelectric SnTe1±x – y SiC nanoparticulate composites
journal, August 2013

  • Schmidt, Robert D.; Case, Eldon D.; Ni, Jennifer E.
  • Journal of Materials Science, Vol. 48, Issue 23
  • DOI: 10.1007/s10853-013-7637-6

An acoustic anomaly at the phase transition in GeTeSnTe alloy single crystals
journal, July 1975


MATERIALS SCIENCE: Who Wins the Nonvolatile Memory Race?
journal, March 2008


Phase change memory technology
journal, March 2010

  • Burr, Geoffrey W.; Breitwisch, Matthew J.; Franceschini, Michele
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 28, Issue 2
  • DOI: 10.1116/1.3301579

An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure
journal, September 2018


Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases
journal, May 2005

  • Lee, Bong-Sub; Abelson, John R.; Bishop, Stephen G.
  • Journal of Applied Physics, Vol. 97, Issue 9
  • DOI: 10.1063/1.1884248

Van der Waals interfacial bonding and intermixing in GeTe-Sb2Te3-based superlattices
journal, February 2018


An X-ray study of the mixed-layered compounds of (GeTe)n (Sb2Te3)m homologous series
journal, March 1998


Dynamic reconfiguration of van der Waals gaps within GeTe–Sb 2 Te 3 based superlattices
journal, January 2017

  • Momand, Jamo; Wang, Ruining; Boschker, Jos E.
  • Nanoscale, Vol. 9, Issue 25
  • DOI: 10.1039/C7NR01684K

Understanding the superior thermoelectric performance of Sb precipitated Ge 17 Sb 2 Te 20
journal, January 2016

  • Williams, Jared B.; Morelli, Donald T.
  • Journal of Materials Chemistry C, Vol. 4, Issue 42
  • DOI: 10.1039/C6TC03789E

Charting the complete elastic properties of inorganic crystalline compounds
journal, March 2015

  • de Jong, Maarten; Chen, Wei; Angsten, Thomas
  • Scientific Data, Vol. 2, Issue 1
  • DOI: 10.1038/sdata.2015.9

Specific Heat of (GeTe) x (Sb 2 Te 3 ) 1– x Phase-Change Materials: The Impact of Disorder and Anharmonicity
journal, March 2014

  • Zalden, Peter; Siegert, Karl Simon; Rols, Stéphane
  • Chemistry of Materials, Vol. 26, Issue 7
  • DOI: 10.1021/cm500175j

Reversible Electrical Switching Phenomena in Disordered Structures
journal, November 1968


High Temperature Resonant Ultrasound Spectroscopy: A Review
journal, January 2010

  • Li, G.; Gladden, J. R.
  • International Journal of Spectroscopy, Vol. 2010
  • DOI: 10.1155/2010/206362

Ambiguities in the structure determination of antimony tellurides arising from almost homometric structure models and stacking disorder
journal, September 2010

  • Schneider, Matthias N.; Seibald, Markus; Lagally, Patrick
  • Journal of Applied Crystallography, Vol. 43, Issue 5
  • DOI: 10.1107/S0021889810032644

Thermal conductivity of phase-change material Ge2Sb2Te5
journal, October 2006

  • Lyeo, Ho-Ki; Cahill, David G.; Lee, Bong-Sub
  • Applied Physics Letters, Vol. 89, Issue 15
  • DOI: 10.1063/1.2359354

Controlling optical polarization conversion with Ge 2 Sb 2 Te 5 -based phase-change dielectric metamaterials
journal, January 2018

  • Zhu, Wei; Yang, Ruisheng; Fan, Yuancheng
  • Nanoscale, Vol. 10, Issue 25
  • DOI: 10.1039/C8NR02587H

Boosting the Thermoelectric Performance of Pseudo-Layered Sb 2 Te 3 (GeTe) n via Vacancy Engineering
journal, October 2018


Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials
journal, June 2010

  • Ni, Jennifer E.; Case, Eldon D.; Khabir, Kristen N.
  • Materials Science and Engineering: B, Vol. 170, Issue 1-3
  • DOI: 10.1016/j.mseb.2010.02.026

Nanosecond switching in GeTe phase change memory cells
journal, July 2009

  • Bruns, G.; Merkelbach, P.; Schlockermann, C.
  • Applied Physics Letters, Vol. 95, Issue 4
  • DOI: 10.1063/1.3191670

Mechanical properties of PbTe-based thermoelectric semiconductors
journal, February 2008


Formation of Large Voids in the Amorphous Phase-Change Memory Ge 2 Sb 2 Te 5 Alloy
journal, February 2009


Refinement of the Sb 2 Te 3 and Sb 2 Te 2 Se structures and their relationship to nonstoichiometric Sb 2 Te 3− y Se y compounds
journal, May 1974

  • Anderson, T. L.; Krause, H. B.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 30, Issue 5
  • DOI: 10.1107/S0567740874004729

Insights into the structure of the stable and metastable ( GeTe ) m ( Sb 2 Te 3 ) n compounds
journal, December 2008


Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials
journal, March 2008

  • Hegedüs, J.; Elliott, S. R.
  • Nature Materials, Vol. 7, Issue 5
  • DOI: 10.1038/nmat2157

Increasing the thermoelectric power factor of Ge 17 Sb 2 Te 20 by adjusting the Ge/Sb ratio
journal, July 2017

  • Williams, Jared B.; Mather, Spencer P.; Page, Alexander
  • Journal of Applied Physics, Vol. 122, Issue 4
  • DOI: 10.1063/1.4995430

Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides
journal, March 2017

  • Li, Juan; Chen, Zhiwei; Zhang, Xinyue
  • NPG Asia Materials, Vol. 9, Issue 3
  • DOI: 10.1038/am.2017.8

The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy
journal, December 2008


A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization
journal, June 2018

  • Zevalkink, Alex; Smiadak, David M.; Blackburn, Jeff L.
  • Applied Physics Reviews, Vol. 5, Issue 2
  • DOI: 10.1063/1.5021094

Atomic stacking and van-der-Waals bonding in GeTe–Sb 2 Te 3 superlattices
journal, September 2016

  • Momand, Jamo; Lange, Felix R. L.; Wang, Ruining
  • Journal of Materials Research, Vol. 31, Issue 20
  • DOI: 10.1557/jmr.2016.334

High thermoelectric potential of Bi 2 Te 3 alloyed GeTe-rich phases
journal, July 2016

  • Madar, Naor; Givon, Tom; Mogilyansky, Dmitry
  • Journal of Applied Physics, Vol. 120, Issue 3
  • DOI: 10.1063/1.4958973

Real Structure and Thermoelectric Properties of GeTe-Rich Germanium Antimony Tellurides
journal, October 2011

  • Rosenthal, Tobias; Schneider, Matthias N.; Stiewe, Christian
  • Chemistry of Materials, Vol. 23, Issue 19
  • DOI: 10.1021/cm201717z

Phase-change random access memory: A scalable technology
journal, July 2008

  • Raoux, S.; Burr, G. W.; Breitwisch, M. J.
  • IBM Journal of Research and Development, Vol. 52, Issue 4.5
  • DOI: 10.1147/rd.524.0465

The Thermal Expansion of GeS and GeTe
journal, June 1977

  • Wiedemeier, H.; Siemers, P. A.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 431, Issue 1
  • DOI: 10.1002/zaac.19774310134

Phase change memory technology
text, January 2010


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.