skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible manipulation of the magnetic state in SrRuO 3 through electric-field controlled proton evolution

Abstract

Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO 3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO 3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems.

Authors:
 [1];  [1];  [2];  [3]; ORCiD logo [1];  [1];  [3]; ORCiD logo [3];  [1];  [4];  [5];  [1];  [6];  [7];  [5];  [8];  [9]; ORCiD logo [10]; ORCiD logo [11];  [12]
  1. Tsinghua Univ., Beijing (China)
  2. Shanghai Jiao Tong Univ. (China)
  3. Univ. of Toronto, ON (Canada)
  4. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Science and Technology of China, Hefei (China)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
  6. Tsinghua Univ., Beijing (China); Chinese Academy of Sciences (CAS), Beijing (China)
  7. Univ. of New Hampshire, Durham, NH (United States)
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  9. Durham Univ. (United Kingdom)
  10. Tsinghua Univ., Beijing (China); Univ. of Toronto, ON (Canada); Frontier Science Center for Quantum Information, Beijing (China)
  11. Shanghai Jiao Tong Univ. (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)
  12. Tsinghua Univ., Beijing (China); Frontier Science Center for Quantum Information, Beijing (China); Inst. of Physical and Chemical Research (RIKEN), Wako (Japan)
Publication Date:
Research Org.:
Univ. of New Hampshire, Durham, NH (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Natural Science Foundation of China (NNSFC); National Basic Research Program of China
OSTI Identifier:
1596536
Grant/Contract Number:  
[SC0020221; AC02-06CH11357; AC02-05CH11231]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
[ Journal Volume: 11; Journal Issue: 1]; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Li, Zhuolu, Shen, Shengchun, Tian, Zijun, Hwangbo, Kyle, Wang, Meng, Wang, Yujia, Bartram, F. Michael, He, Liqun, Lyu, Yingjie, Dong, Yongqi, Wan, Gang, Li, Haobo, Lu, Nianpeng, Zang, Jiadong, Zhou, Hua, Arenholz, Elke, He, Qing, Yang, Luyi, Luo, Weidong, and Yu, Pu. Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution. United States: N. p., 2020. Web. doi:10.1038/s41467-019-13999-1.
Li, Zhuolu, Shen, Shengchun, Tian, Zijun, Hwangbo, Kyle, Wang, Meng, Wang, Yujia, Bartram, F. Michael, He, Liqun, Lyu, Yingjie, Dong, Yongqi, Wan, Gang, Li, Haobo, Lu, Nianpeng, Zang, Jiadong, Zhou, Hua, Arenholz, Elke, He, Qing, Yang, Luyi, Luo, Weidong, & Yu, Pu. Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution. United States. doi:10.1038/s41467-019-13999-1.
Li, Zhuolu, Shen, Shengchun, Tian, Zijun, Hwangbo, Kyle, Wang, Meng, Wang, Yujia, Bartram, F. Michael, He, Liqun, Lyu, Yingjie, Dong, Yongqi, Wan, Gang, Li, Haobo, Lu, Nianpeng, Zang, Jiadong, Zhou, Hua, Arenholz, Elke, He, Qing, Yang, Luyi, Luo, Weidong, and Yu, Pu. Fri . "Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution". United States. doi:10.1038/s41467-019-13999-1. https://www.osti.gov/servlets/purl/1596536.
@article{osti_1596536,
title = {Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution},
author = {Li, Zhuolu and Shen, Shengchun and Tian, Zijun and Hwangbo, Kyle and Wang, Meng and Wang, Yujia and Bartram, F. Michael and He, Liqun and Lyu, Yingjie and Dong, Yongqi and Wan, Gang and Li, Haobo and Lu, Nianpeng and Zang, Jiadong and Zhou, Hua and Arenholz, Elke and He, Qing and Yang, Luyi and Luo, Weidong and Yu, Pu},
abstractNote = {Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems.},
doi = {10.1038/s41467-019-13999-1},
journal = {Nature Communications},
number = [1],
volume = [11],
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Protonation induced high- T c phases in iron-based superconductors evidenced by NMR and magnetization measurements
journal, January 2018


Electronic structure and magnetism in Ru-based perovskites
journal, August 1997


Manipulate the Electronic and Magnetic States in NiCo 2 O 4 Films through Electric‐Field‐Induced Protonation at Elevated Temperature
journal, February 2019


Interpretation of experimental evidence of the topological Hall effect
journal, December 2018


Complexity in Strongly Correlated Electronic Systems
journal, July 2005


Multiferroics of spin origin
journal, July 2014


Advances in magnetoelectric multiferroics
journal, February 2019


Interfacial oxygen-octahedral-tilting-driven electrically tunable topological Hall effect in ultrathin SrRuO 3 films
journal, July 2019

  • Gu, Youdi; Wei, Yi-Wen; Xu, Kun
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 40
  • DOI: 10.1088/1361-6463/ab2fe8

Metal-insulator transitions
journal, October 1998

  • Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori
  • Reviews of Modern Physics, Vol. 70, Issue 4, p. 1039-1263
  • DOI: 10.1103/RevModPhys.70.1039

The evolution of multiferroics
journal, July 2016


Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures
journal, November 2018


Suppression of Metal-Insulator Transition in VO2 by Electric Field-Induced Oxygen Vacancy Formation
journal, March 2013


Alternative to the topological interpretation of the transverse resistivity anomalies in SrRuO 3
journal, November 2018


Progress in perovskite nickelate research
journal, July 2008


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Two-component anomalous Hall effect in a magnetically doped topological insulator
journal, March 2018


Topological Hall effect in thin films of the Heisenberg ferromagnet EuO
journal, June 2015


Inhomogeneous Electron Gas
journal, November 1964


Spin-Glass-Like Behavior and Topological Hall Effect in SrRuO 3 /SrIrO 3 Superlattices for Oxide Spintronics Applications
journal, January 2017

  • Pang, Bin; Zhang, Lunyong; Chen, Y. B.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 3
  • DOI: 10.1021/acsami.7b00150

Structure of Hydrous Ruthenium Oxides:  Implications for Charge Storage
journal, June 1999

  • McKeown, David A.; Hagans, Patrick L.; Carette, Linda P. L.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 23
  • DOI: 10.1021/jp990096n

Structure, physical properties, and applications of SrRuO 3 thin films
journal, March 2012


Observation of Nanoscale Skyrmions in SrIrO 3 /SrRuO 3 Bilayers
journal, March 2019


Topological Hall Effect in the A Phase of MnSi
journal, May 2009


Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating
journal, October 2014

  • Yi, Hee Taek; Gao, Bin; Xie, Wei
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06604

Unusual Hall Effect Anomaly in MnSi under Pressure
journal, May 2009


High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates
journal, May 2008

  • Jin, C. -Q.; Zhou, J. -S.; Goodenough, J. B.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 20
  • DOI: 10.1073/pnas.0710928105

Electric-field control of anomalous and topological Hall effects in oxide bilayer thin films
journal, January 2018


Ferroelectric field effect in ultrathin SrRuO3 films
journal, January 1997

  • Ahn, C. H.; Hammond, R. H.; Geballe, T. H.
  • Applied Physics Letters, Vol. 70, Issue 2
  • DOI: 10.1063/1.118203

Doping a Mott insulator: Physics of high-temperature superconductivity
journal, January 2006

  • Lee, Patrick A.; Nagaosa, Naoto; Wen, Xiao-Gang
  • Reviews of Modern Physics, Vol. 78, Issue 1
  • DOI: 10.1103/RevModPhys.78.17

Gate tuning of anomalous Hall effect in ferromagnetic metal SrRuO 3
journal, October 2014

  • Shimizu, Sunao; Takahashi, Kei S.; Kubota, Masashi
  • Applied Physics Letters, Vol. 105, Issue 16
  • DOI: 10.1063/1.4899145

Electric field manipulation of magnetic and transport properties in SrRuO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure
journal, November 2014

  • Zhou, W. P.; Li, Q.; Xiong, Y. Q.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06991

Electric-field-induced modulation of the anomalous Hall effect in a heterostructured itinerant ferromagnet SrRuO 3
journal, December 2017


Electric‐Field‐Controlled Phase Transformation in WO 3 Thin Films through Hydrogen Evolution
journal, October 2017


Electric-field control of tri-state phase transformation with a selective dual-ion switch
journal, May 2017

  • Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua
  • Nature, Vol. 546, Issue 7656
  • DOI: 10.1038/nature22389

The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space
journal, October 2003


Real-space observation of a two-dimensional skyrmion crystal
journal, June 2010


Interface-driven topological Hall effect in SrRuO 3 -SrIrO 3 bilayer
journal, July 2016


Correlated Oxide Physics and Electronics
journal, July 2014


Emergence of Topological Hall Effect in a SrRuO 3 Single Layer
journal, January 2019


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965