Megahertz-compatible angular streaking with few-femtosecond resolution at x-ray free-electron lasers
- Technische Univ. München, Garching (Germany)
- SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Bern (Switzerland); Coherent Inc., Santa Clara, CA (United States)
- European XFEL GmbH, Schenefeld (Germany); SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. Kassel (Germany)
- European XFEL GmbH, Schenefeld (Germany); Christian-Albrechts-Univ. zu Kiel (Germany)
- Univ. Kassel (Germany); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
- SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Gothenburg (Sweden); Qamcom Research & Technology AB, GoteBorg (Sweden)
- European XFEL GmbH, Schenefeld (Germany)
- SLAC National Accelerator Lab., Menlo Park, CA (United States)
- Technische Univ. München, Garching (Germany); Max-Planck-Institut für Quantenoptik, Garching (Germany)
- Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin (Germany)
- Univ. of Bern (Switzerland)
- Technische Univ. München, Garching (Germany); Ludwig-Maximilians-Univ. München, Garching (Germany); Technische Univ. Dortmund (Germany)
Highly brilliant, coherent, femtosecond x-ray pulses delivered by free-electron lasers (FELs) constitute one of the pillars of modern ultrafast science. Next generation FEL facilities provide up to megahertz repetition rates and pulse durations down to the attosecond regime utilizing self-amplification of spontaneous emission. However, the stochastic nature of this generation mechanism demands single-shot pulse characterization to perform meaningful experiments. Here we demonstrate a fast yet robust online analysis technique capable of megahertz-rate mapping of the temporal intensity structure and arrival time of x-ray FEL pulses with few-femtosecond resolution. We performed angular streaking measurements of both neon photo- and Auger electrons and show their applicability for a direct time-domain feedback system during ongoing experiments. Here, the fidelity of the real-time pulse characterization algorithm is corroborated by resolving isolated x-ray pulses and double pulse trains with few-femtosecond substructure, thus paving the way for x-ray-pump–x-ray-probe FEL science at repetition rates compatible with the demands of LCLS-II and European XFEL.
- Research Organization:
- SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Marie Curie International Outgoing Fellowship; BaCaTeC program; German Cluster of Excellence MAP; European I3-Initiative “LASERLAB-Europe IV”; Theory group; Volkswagen foundation
- Grant/Contract Number:
- AC02-76SF00515
- OSTI ID:
- 1596332
- Journal Information:
- Physical Review A, Journal Name: Physical Review A Journal Issue: 5 Vol. 100; ISSN PLRAAN; ISSN 2469-9926
- Publisher:
- American Physical Society (APS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Megahertz serial crystallography
Cascaded hard X-ray self-seeded free-electron laser at megahertz repetition rate
Related Subjects
Atomic & molecular processes in external fields
Autoionization & Auger processes
Beam diagnostics
Femtosecond laser spectroscopy
Laser spectroscopy
Light-matter interaction
Optical coherence
Optics & lasers
Photoemission
Photoionization
Single- and few-photon ionization & excitation
Synchrotron radiation & free-electron lasers
Timing & synchronization
Ultrafast optics
Ultrafast phenomena
Ultrashort pulses
Vacuum technology
X-ray beams & optics
X-ray lasers
X-ray photoelectron spectroscopy