skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on January 29, 2021

Title: ChemML : A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data

Authors:
ORCiD logo [1];  [1];  [2];  [3];  [3];  [1];  [4]; ORCiD logo [5]
  1. Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New York Buffalo New York
  2. The Molecular Sciences Software Institute, Virginia Tech Blacksburg Virginia, Computer and Systems Engineering DepartmentAlexandria University Alexandria Egypt
  3. Department of Computer Science and EngineeringUniversity at Buffalo, The State University of New York Buffalo New York, Center for Unified Biometrics and SensorsUniversity at Buffalo, The State University of New York Buffalo New York
  4. Department of Computer Science and EngineeringUniversity at Buffalo, The State University of New York Buffalo New York, Center for Unified Biometrics and SensorsUniversity at Buffalo, The State University of New York Buffalo New York, Center of Excellence for Document Analysis and Recognition, University at BuffaloThe State University of New York Buffalo New York
  5. Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New York Buffalo New York, Computational and Data‐Enabled Science and Engineering Graduate ProgramUniversity at Buffalo, The State University of New York Buffalo New York, New York State Center of Excellence in Materials Informatics Buffalo New York
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1596162
Grant/Contract Number:  
DE‐SC0017193
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Wiley Interdisciplinary Reviews: Computational Molecular Science
Additional Journal Information:
Journal Name: Wiley Interdisciplinary Reviews: Computational Molecular Science; Journal ID: ISSN 1759-0876
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United States
Language:
English

Citation Formats

Haghighatlari, Mojtaba, Vishwakarma, Gaurav, Altarawy, Doaa, Subramanian, Ramachandran, Kota, Bhargava U., Sonpal, Aditya, Setlur, Srirangaraj, and Hachmann, Johannes. ChemML : A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data. United States: N. p., 2020. Web. doi:10.1002/wcms.1458.
Haghighatlari, Mojtaba, Vishwakarma, Gaurav, Altarawy, Doaa, Subramanian, Ramachandran, Kota, Bhargava U., Sonpal, Aditya, Setlur, Srirangaraj, & Hachmann, Johannes. ChemML : A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data. United States. doi:10.1002/wcms.1458.
Haghighatlari, Mojtaba, Vishwakarma, Gaurav, Altarawy, Doaa, Subramanian, Ramachandran, Kota, Bhargava U., Sonpal, Aditya, Setlur, Srirangaraj, and Hachmann, Johannes. Thu . "ChemML : A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data". United States. doi:10.1002/wcms.1458.
@article{osti_1596162,
title = {ChemML : A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data},
author = {Haghighatlari, Mojtaba and Vishwakarma, Gaurav and Altarawy, Doaa and Subramanian, Ramachandran and Kota, Bhargava U. and Sonpal, Aditya and Setlur, Srirangaraj and Hachmann, Johannes},
abstractNote = {},
doi = {10.1002/wcms.1458},
journal = {Wiley Interdisciplinary Reviews: Computational Molecular Science},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 29, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Machine learning methods in chemoinformatics: Machine learning methods in chemoinformatics
journal, February 2014

  • Mitchell, John B. O.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 5
  • DOI: 10.1002/wcms.1183

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining
journal, May 2019

  • Afzal, Mohammad Atif Faiz; Haghighatlari, Mojtaba; Ganesh, Sai Prasad
  • The Journal of Physical Chemistry C, Vol. 123, Issue 23
  • DOI: 10.1021/acs.jpcc.9b01147

Inverse molecular design using machine learning: Generative models for matter engineering
journal, July 2018


Advances of machine learning in molecular modeling and simulation
journal, March 2019


Open Babel: An open chemical toolbox
journal, October 2011

  • O'Boyle, Noel M.; Banck, Michael; James, Craig A.
  • Journal of Cheminformatics, Vol. 3, Issue 1
  • DOI: 10.1186/1758-2946-3-33

Learning molecular energies using localized graph kernels
journal, March 2017

  • Ferré, Grégoire; Haut, Terry; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 146, Issue 11
  • DOI: 10.1063/1.4978623

The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid
journal, August 2011

  • Hachmann, Johannes; Olivares-Amaya, Roberto; Atahan-Evrenk, Sule
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 17
  • DOI: 10.1021/jz200866s

Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers
journal, June 2018

  • Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5007873

Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
journal, June 2015

  • Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00831

Deep Generative Models for Molecular Science
journal, January 2018

  • Jørgensen, Peter B.; Schmidt, Mikkel N.; Winther, Ole
  • Molecular Informatics, Vol. 37, Issue 1-2
  • DOI: 10.1002/minf.201700133

Constant size descriptors for accurate machine learning models of molecular properties
journal, June 2018

  • Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5020441

Advances and challenges in deep generative models for de novo molecule generation
journal, October 2018

  • Xue, Dongyu; Gong, Yukang; Yang, Zhaoyi
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 9, Issue 3
  • DOI: 10.1002/wcms.1395

Active Learning
journal, June 2012


Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics
journal, January 2011

  • Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Hachmann, Johannes
  • Energy & Environmental Science, Vol. 4, Issue 12
  • DOI: 10.1039/c1ee02056k

The Harvard organic photovoltaic dataset
journal, September 2016

  • Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.
  • Scientific Data, Vol. 3, Issue 1
  • DOI: 10.1038/sdata.2016.86

A Survey on Transfer Learning
journal, October 2010

  • Pan, Sinno Jialin; Yang, Qiang
  • IEEE Transactions on Knowledge and Data Engineering, Vol. 22, Issue 10
  • DOI: 10.1109/TKDE.2009.191

Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project
journal, January 2014

  • Hachmann, Johannes; Olivares-Amaya, Roberto; Jinich, Adrian
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE42756K

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Batch Mode Active Learning for Regression With Expected Model Change
journal, July 2017

  • Cai, Wenbin; Zhang, Muhan; Zhang, Ya
  • IEEE Transactions on Neural Networks and Learning Systems, Vol. 28, Issue 7
  • DOI: 10.1109/TNNLS.2016.2542184

Building and deploying a cyberinfrastructure for the data-driven design of chemical systems and the exploration of chemical space
journal, April 2018

  • Hachmann, Johannes; Afzal, Mohammad Atif Faiz; Haghighatlari, Mojtaba
  • Molecular Simulation, Vol. 44, Issue 11
  • DOI: 10.1080/08927022.2018.1471692

A general-purpose machine learning framework for predicting properties of inorganic materials
journal, August 2016


Universal fragment descriptors for predicting properties of inorganic crystals
journal, June 2017

  • Isayev, Olexandr; Oses, Corey; Toher, Cormac
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15679

Machine learning for molecular and materials science
journal, July 2018


Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers
journal, January 2019

  • Afzal, Mohammad Atif Faiz; Hachmann, Johannes
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 8
  • DOI: 10.1039/C8CP05492D

NSF’s Inaugural Software Institutes: The Science Gateways Community Institute and the Molecular Sciences Software Institute
journal, September 2018


Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science
journal, November 2018

  • Krylov, Anna; Windus, Theresa L.; Barnes, Taylor
  • The Journal of Chemical Physics, Vol. 149, Issue 18
  • DOI: 10.1063/1.5052551