DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Editorial: Microbial Hydrogen Metabolism


Among the most ancient and widespread metabolic traits of microbial life is the ability to interconvert molecular hydrogen H2. Two classes of metalloenzymes, [FeFe]-hydrogenase and [NiFe]-hydrogenase, catalyze the reversible oxidation of H2 to electrons and protons; a third class of hydrogenase, termed [Fe]-hydrogenase or Hmd, catalyzes the reduction of the substrate methenyltetrahydromethanopterin with H2. The three classes of enzyme differ structurally and are phylogenetically unrelated.

Publication Date:
Research Org.:
Montana State Univ., Bozeman, MT (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1595992
Grant/Contract Number:  
SC0020246; 170100310; APP1178715
Resource Type:
Published Article
Journal Name:
Frontiers in Microbiology
Additional Journal Information:
Journal Name: Frontiers in Microbiology Journal Volume: 11; Journal ID: ISSN 1664-302X
Frontiers Research Foundation
Country of Publication:
59 BASIC BIOLOGICAL SCIENCES; hydrogen; hydrogen metabolism; hydrogenase; fermentation; respiration

Citation Formats

Greening, Chris, and Boyd, Eric. Editorial: Microbial Hydrogen Metabolism. Switzerland: N. p., 2020. Web. doi:10.3389/fmicb.2020.00056.
Greening, Chris, & Boyd, Eric. Editorial: Microbial Hydrogen Metabolism. Switzerland.
Greening, Chris, and Boyd, Eric. Thu . "Editorial: Microbial Hydrogen Metabolism". Switzerland.
title = {Editorial: Microbial Hydrogen Metabolism},
author = {Greening, Chris and Boyd, Eric},
abstractNote = {Among the most ancient and widespread metabolic traits of microbial life is the ability to interconvert molecular hydrogen H2. Two classes of metalloenzymes, [FeFe]-hydrogenase and [NiFe]-hydrogenase, catalyze the reversible oxidation of H2 to electrons and protons; a third class of hydrogenase, termed [Fe]-hydrogenase or Hmd, catalyzes the reduction of the substrate methenyltetrahydromethanopterin with H2. The three classes of enzyme differ structurally and are phylogenetically unrelated.},
doi = {10.3389/fmicb.2020.00056},
journal = {Frontiers in Microbiology},
number = ,
volume = 11,
place = {Switzerland},
year = {2020},
month = {1}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Mixotrophy drives niche expansion of verrucomicrobial methanotrophs
journal, August 2017

  • Carere, Carlo R.; Hards, Kiel; Houghton, Karen M.
  • The ISME Journal, Vol. 11, Issue 11
  • DOI: 10.1038/ismej.2017.112

Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling
journal, February 2018

Anaerobic Formate and Hydrogen Metabolism
journal, January 2016

Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria
journal, November 2014

  • Schuchmann, Kai; Müller, Volker
  • Nature Reviews Microbiology, Vol. 12, Issue 12
  • DOI: 10.1038/nrmicro3365

Microbial hydrogenases: Primary structure, classification, signatures and phylogeny
journal, April 1993

Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation
journal, August 2014

Bacterial formate hydrogenlyase complex
journal, August 2014

  • McDowall, J. S.; Murphy, B. J.; Haumann, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 38
  • DOI: 10.1073/pnas.1407927111

A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases
journal, March 2014

  • Greening, C.; Berney, M.; Hards, K.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 11
  • DOI: 10.1073/pnas.1320586111

[FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation
journal, June 2015

  • Peters, John W.; Schut, Gerrit J.; Boyd, Eric S.
  • Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1853, Issue 6
  • DOI: 10.1016/j.bbamcr.2014.11.021

Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival
journal, September 2015

  • Greening, Chris; Biswas, Ambarish; Carere, Carlo R.
  • The ISME Journal, Vol. 10, Issue 3
  • DOI: 10.1038/ismej.2015.153

Probing the geological source and biological fate of hydrogen in Yellowstone hot springs
journal, July 2019

  • Lindsay, Melody R.; Colman, Daniel R.; Amenabar, Maximiliano J.
  • Environmental Microbiology, Vol. 21, Issue 10
  • DOI: 10.1111/1462-2920.14730

Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO).
journal, January 1996

Function of Periplasmic Hydrogenases in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough
journal, June 2007

  • Caffrey, S. M.; Park, H. -S.; Voordouw, J. K.
  • Journal of Bacteriology, Vol. 189, Issue 17
  • DOI: 10.1128/JB.00747-07

Molecular Hydrogen as an Energy Source for Helicobacter pylori
journal, November 2002

Microbiota-Derived Hydrogen Fuels Salmonella Typhimurium Invasion of the Gut Ecosystem
journal, December 2013

Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence
journal, October 2019

  • Cordero, Paul R. F.; Grinter, Rhys; Hards, Kiel
  • Journal of Biological Chemistry, Vol. 294, Issue 50
  • DOI: 10.1074/jbc.RA119.011076

Respiratory Hydrogen Use by Salmonella enterica Serovar Typhimurium Is Essential for Virulence
journal, October 2004

Diverse hydrogen production and consumption pathways influence methane production in ruminants
journal, June 2019

The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio
journal, December 1988

Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG
journal, April 2010

  • Mulder, David W.; Boyd, Eric S.; Sarma, Ranjana
  • Nature, Vol. 465, Issue 7295
  • DOI: 10.1038/nature08993

Hydrogenases in sulfate-reducing bacteria function as chromium reductase
journal, July 2003

  • Chardin, B.; Giudici-Orticoni, M. -T.; De Luca, G.
  • Applied Microbiology and Biotechnology, Vol. 63, Issue 3
  • DOI: 10.1007/s00253-003-1390-8

Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities
journal, January 2012

  • Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.
  • Frontiers in Microbiology, Vol. 2
  • DOI: 10.3389/fmicb.2011.00268

The physiology and habitat of the last universal common ancestor
journal, July 2016

The hydA gene encoding the H 2 -evolving hydrogenase of Clostridium perfringens : molecular characterization and expression of the gene
journal, December 1999

Occurrence, Classification, and Biological Function of Hydrogenases:  An Overview
journal, October 2007

  • Vignais, Paulette M.; Billoud, Bernard
  • Chemical Reviews, Vol. 107, Issue 10, p. 4206-4272
  • DOI: 10.1021/cr050196r

Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase
journal, December 2016

  • Mohammadi, Sepehr; Pol, Arjan; van Alen, Theo A.
  • The ISME Journal, Vol. 11, Issue 4
  • DOI: 10.1038/ismej.2016.171

Cyanobacterial hydrogenases: diversity, regulation and applications
journal, November 2007

H 2 metabolism is widespread and diverse among human colonic microbes
journal, March 2016

A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases
journal, February 2013

  • Marreiros, Bruno C.; Batista, Ana P.; Duarte, Afonso M. S.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 2
  • DOI: 10.1016/j.bbabio.2012.09.012

Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase
journal, March 2010

Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology
journal, April 2014

Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile
journal, July 2018

  • Amenabar, Maximiliano J.; Colman, Daniel R.; Poudel, Saroj
  • Environmental Microbiology, Vol. 20, Issue 7
  • DOI: 10.1111/1462-2920.14270

Identification of an uptake hydrogenase for hydrogen-dependent dissimilatory azoreduction by Shewanella decolorationis S12
journal, July 2008

  • Hong, Yi-Guo; Guo, Jun; Sun, Guo-Ping
  • Applied Microbiology and Biotechnology, Vol. 80, Issue 3
  • DOI: 10.1007/s00253-008-1597-9

How did LUCA make a living? Chemiosmosis in the origin of life
journal, January 2010

The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site
journal, July 2008

Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments
journal, April 2019

A Bacterial Electron-bifurcating Hydrogenase
journal, July 2012

  • Schuchmann, Kai; Müller, Volker
  • Journal of Biological Chemistry, Vol. 287, Issue 37
  • DOI: 10.1074/jbc.M112.395038

Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial Carbon Dioxide Reductase
journal, December 2013

Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas
journal, February 1995

  • Volbeda, Anne; Charon, Marie-Hélène; Piras, Claudine
  • Nature, Vol. 373, Issue 6515
  • DOI: 10.1038/373580a0

The hydrogenases of Thiocapsa roseopersicina
journal, February 2005

  • Kovács, K. L.; Kovács, Á. T.; Maróti, G.
  • Biochemical Society Transactions, Vol. 33, Issue 1
  • DOI: 10.1042/BST0330061

Hydrogen is an energy source for hydrothermal vent symbioses
journal, August 2011

  • Petersen, Jillian M.; Zielinski, Frank U.; Pape, Thomas
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10325

Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments
journal, March 2019

Organohalide respiratory chains: composition, topology and key enzymes
journal, March 2018

  • Schubert, Torsten; Adrian, Lorenz; Sawers, R. Gary
  • FEMS Microbiology Ecology, Vol. 94, Issue 4
  • DOI: 10.1093/femsec/fiy035

Iron Hydrogenases and the Evolution of Anaerobic Eukaryotes
journal, November 2000

Hydrogenases for biological hydrogen production
journal, September 2011

Volatile Fatty Acids and Hydrogen as Substrates for Sulfate-Reducing Bacteria in Anaerobic Marine Sediment
journal, January 1981

  • Sørensen, Jan; Christensen, Dorte; Jørgensen, Bo Barker
  • Applied and Environmental Microbiology, Vol. 42, Issue 1
  • DOI: 10.1128/AEM.42.1.5-11.1981

Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H 2 Storage
journal, June 2010

Atmospheric trace gases support primary production in Antarctic desert surface soil
journal, December 2017

  • Ji, Mukan; Greening, Chris; Vanwonterghem, Inka
  • Nature, Vol. 552, Issue 7685
  • DOI: 10.1038/nature25014

Rock comminution as a source of hydrogen for subglacial ecosystems
journal, October 2015

  • Telling, J.; Boyd, E. S.; Bone, N.
  • Nature Geoscience, Vol. 8, Issue 11
  • DOI: 10.1038/ngeo2533