skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on January 9, 2021

Title: Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose

Abstract

ABSTRACT Conversion of lignocellulosic biomass to biofuels using microbial fermentation is a promising option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The vital challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.

Authors:
 [1]; ORCiD logo [2]
  1. Univ. of Colorado, Boulder, CO (United States); Renewable and Sustainable Energy Inst. (RASEI), Boulder, CO (United States)
  2. Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Food Science and Human Nutrition; Univ. of Illinois at Urbana-Champaign, IL (United States). Carl R. Woese Inst. for Genomic Biology; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)
Publication Date:
Research Org.:
Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1595946
Alternate Identifier(s):
OSTI ID: 1592780
Grant/Contract Number:  
[SC0018420]
Resource Type:
Accepted Manuscript
Journal Name:
FEMS Yeast Research
Additional Journal Information:
[ Journal Volume: 20; Journal Issue: 1]; Journal ID: ISSN 1567-1356
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Saccharomyces cerevisiae; lignocellulosic biomass; biofuel

Citation Formats

Oh, Eun Joong, and Jin, Yong-Su. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. United States: N. p., 2020. Web. doi:10.1093/femsyr/foz089.
Oh, Eun Joong, & Jin, Yong-Su. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. United States. doi:10.1093/femsyr/foz089.
Oh, Eun Joong, and Jin, Yong-Su. Thu . "Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose". United States. doi:10.1093/femsyr/foz089.
@article{osti_1595946,
title = {Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose},
author = {Oh, Eun Joong and Jin, Yong-Su},
abstractNote = {ABSTRACT Conversion of lignocellulosic biomass to biofuels using microbial fermentation is a promising option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The vital challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.},
doi = {10.1093/femsyr/foz089},
journal = {FEMS Yeast Research},
number = [1],
volume = [20],
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 9, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Cellodextrin Transport in Yeast for Improved Biofuel Production
journal, September 2010


Proximity Effect among Cellulose-Degrading Enzymes Displayed on the Saccharomyces cerevisiae Cell Surface
journal, October 2014

  • Bae, Jungu; Kuroda, Kouichi; Ueda, Mitsuyoshi
  • Applied and Environmental Microbiology, Vol. 81, Issue 1
  • DOI: 10.1128/AEM.02864-14

The Cellulosomes: Multienzyme Machines for Degradation of Plant Cell Wall Polysaccharides
journal, October 2004


Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter
journal, January 2014

  • Inokuma, Kentaro; Hasunuma, Tomohisa; Kondo, Akihiko
  • Biotechnology for Biofuels, Vol. 7, Issue 1
  • DOI: 10.1186/1754-6834-7-8

Agriculture: Beyond food versus fuel
journal, June 2011


Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
journal, January 2007

  • Almeida, Joao; Modig, Tobias; Petersson, Anneli
  • Journal of Chemical Technology & Biotechnology, Vol. 82, Issue 4, p. 340-349
  • DOI: 10.1002/jctb.1676

Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing
journal, November 2013


Fungal β-glucosidase expression in Saccharomyces cerevisiae
journal, June 2012

  • Njokweni, A. P.; Rose, S. H.; van Zyl, W. H.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 39, Issue 10
  • DOI: 10.1007/s10295-012-1150-9

Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects
journal, January 2016


Yeast cell-surface display?applications of molecular display
journal, March 2004


Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities
journal, October 2007

  • Jørgensen, Henning; Kristensen, Jan Bach; Felby, Claus
  • Biofuels, Bioproducts and Biorefining, Vol. 1, Issue 2
  • DOI: 10.1002/bbb.4

Simultaneous Utilization of Cellobiose, Xylose, and Acetic Acid from Lignocellulosic Biomass for Biofuel Production by an Engineered Yeast Platform
journal, November 2014

  • Wei, Na; Oh, Eun Joong; Million, Gyver
  • ACS Synthetic Biology, Vol. 4, Issue 6
  • DOI: 10.1021/sb500364q

Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol
journal, May 2012


Comparative kinetic analysis of two fungal β-glucosidases
journal, January 2010

  • Chauve, Marie; Mathis, Hugues; Huc, Delphine
  • Biotechnology for Biofuels, Vol. 3, Issue 1
  • DOI: 10.1186/1754-6834-3-3

Consolidated bioprocessing of cellulosic biomass: an update
journal, October 2005

  • Lynd, Lee R.; van Zyl, Willem H.; McBride, John E.
  • Current Opinion in Biotechnology, Vol. 16, Issue 5, p. 577-583
  • DOI: 10.1016/j.copbio.2005.08.009

Plasmid stability in recombinant Saccharomyces cerevisiae
journal, January 1996


Direct and Efficient Production of Ethanol from Cellulosic Material with a Yeast Strain Displaying Cellulolytic Enzymes
journal, October 2002


Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae
journal, February 2011

  • Sadie, Christa J.; Rose, Shaunita H.; den Haan, Riaan
  • Applied Microbiology and Biotechnology, Vol. 90, Issue 4
  • DOI: 10.1007/s00253-011-3164-z

Functional Display of Complex Cellulosomes on the Yeast Surface via Adaptive Assembly
journal, July 2012

  • Tsai, Shen-Long; DaSilva, Nancy A.; Chen, Wilfred
  • ACS Synthetic Biology, Vol. 2, Issue 1
  • DOI: 10.1021/sb300047u

Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet
journal, November 2002


Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with Saccharomyces cerevisiae
journal, September 2015


Functional Assembly of Minicellulosomes on the Saccharomyces cerevisiae Cell Surface for Cellulose Hydrolysis and Ethanol Production
journal, August 2009

  • Tsai, S. -L.; Oh, J.; Singh, S.
  • Applied and Environmental Microbiology, Vol. 75, Issue 19
  • DOI: 10.1128/AEM.01538-09

Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase
journal, September 2013


A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations
journal, August 2016

  • González-Ramos, Daniel; Gorter de Vries, Arthur R.; Grijseels, Sietske S.
  • Biotechnology for Biofuels, Vol. 9, Issue 1
  • DOI: 10.1186/s13068-016-0583-1

Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
journal, August 2012

  • Aeling, Kimberly A.; Salmon, Kirsty A.; Laplaza, José M.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 39, Issue 11
  • DOI: 10.1007/s10295-012-1169-y

Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose
journal, June 2011


Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase
journal, September 2015

  • Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.
  • Applied and Environmental Microbiology, Vol. 81, Issue 23
  • DOI: 10.1128/AEM.01689-15

Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae
journal, April 2016

  • Oh, Eun Joong; Skerker, Jeffrey M.; Kim, Soo Rin
  • Applied and Environmental Microbiology, Vol. 82, Issue 12
  • DOI: 10.1128/AEM.00410-16

Regulation of the Display Ratio of Enzymes on the Saccharomyces cerevisiae Cell Surface by the Immunoglobulin G and Cellulosomal Enzyme Binding Domains
journal, May 2009

  • Ito, J.; Kosugi, A.; Tanaka, T.
  • Applied and Environmental Microbiology, Vol. 75, Issue 12
  • DOI: 10.1128/AEM.00318-09

Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
journal, August 2017

  • Chomvong, Kulika; Benjamin, Daniel I.; Nomura, Daniel K.
  • mBio, Vol. 8, Issue 4
  • DOI: 10.1128/mBio.00855-17

Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing
journal, June 2015


Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization
journal, March 2016


Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
journal, October 2013

  • Wei, Na; Quarterman, Josh; Kim, Soo Rin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3580

Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae
journal, January 2013


Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain
journal, June 2011

  • Ha, Suk-Jin; Wei, Qiaosi; Kim, Soo Rin
  • Applied and Environmental Microbiology, Vol. 77, Issue 16
  • DOI: 10.1128/AEM.05228-11

Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production
journal, August 2012

  • Fan, L. -H.; Zhang, Z. -J.; Yu, X. -Y.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 33
  • DOI: 10.1073/pnas.1209856109

Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae
journal, January 2012


Yeast Surface Display of Trifunctional Minicellulosomes for Simultaneous Saccharification and Fermentation of Cellulose to Ethanol
journal, December 2009

  • Wen, F.; Sun, J.; Zhao, H.
  • Applied and Environmental Microbiology, Vol. 76, Issue 4
  • DOI: 10.1128/AEM.01687-09

Cellulosomes: plant-cell-wall-degrading enzyme complexes
journal, July 2004

  • Doi, Roy H.; Kosugi, Akihiko
  • Nature Reviews Microbiology, Vol. 2, Issue 7
  • DOI: 10.1038/nrmicro925

Engineering cellulolytic ability into bioprocessing organisms
journal, May 2010

  • la Grange, Daniel C.; den Haan, Riaan; van Zyl, Willem H.
  • Applied Microbiology and Biotechnology, Vol. 87, Issue 4
  • DOI: 10.1007/s00253-010-2660-x

Microbial Cellulose Utilization: Fundamentals and Biotechnology
journal, September 2002

  • Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.
  • Microbiology and Molecular Biology Reviews, Vol. 66, Issue 3, p. 506-577
  • DOI: 10.1128/MMBR.66.3.506-577.2002

Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome
journal, January 2011

  • Goyal, Garima; Tsai, Shen-Long; Madan, Bhawna
  • Microbial Cell Factories, Vol. 10, Issue 1
  • DOI: 10.1186/1475-2859-10-89

Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries
journal, September 2017


Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass : Adaptive Evolution for Hydrolysates Tolerance in Yeast
journal, July 2013

  • Almario, María P.; Reyes, Luis H.; Kao, Katy C.
  • Biotechnology and Bioengineering, Vol. 110, Issue 10
  • DOI: 10.1002/bit.24938

Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering
journal, January 2016

  • Chen, Yingying; Stabryla, Lisa; Wei, Na
  • Applied and Environmental Microbiology, Vol. 82, Issue 7
  • DOI: 10.1128/AEM.03718-15

Enhancement of Acetic Acid Tolerance in Saccharomyces cerevisiae by Overexpression of the HAA1 Gene, Encoding a Transcriptional Activator
journal, September 2012

  • Tanaka, Koichi; Ishii, Yukari; Ogawa, Jun
  • Applied and Environmental Microbiology, Vol. 78, Issue 22
  • DOI: 10.1128/AEM.02356-12

Features of promising technologies for pretreatment of lignocellulosic biomass
journal, April 2005


Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae
journal, February 2019


Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins
journal, January 2013

  • Eriksen, Dawn T.; Hsieh, Pei Chiun; Lynn, Patrick
  • Microbial Cell Factories, Vol. 12, Issue 1
  • DOI: 10.1186/1475-2859-12-61

Bio-ethanol – the fuel of tomorrow from the residues of today
journal, December 2006

  • Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M. F.
  • Trends in Biotechnology, Vol. 24, Issue 12, p. 549-556
  • DOI: 10.1016/j.tibtech.2006.10.004

Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose
journal, January 2013

  • Nakatani, Yuki; Yamada, Ryosuke; Ogino, Chiaki
  • Microbial Cell Factories, Vol. 12, Issue 1
  • DOI: 10.1186/1475-2859-12-66

Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression
journal, January 2011

  • Yamada, Ryosuke; Taniguchi, Naho; Tanaka, Tsutomu
  • Biotechnology for Biofuels, Vol. 4, Issue 1
  • DOI: 10.1186/1754-6834-4-8

Ethanol production from cellulosic materials using cellulase-expressing yeast
journal, March 2010

  • Yanase, Shuhei; Yamada, Ryosuke; Kaneko, Shohei
  • Biotechnology Journal, Vol. 5, Issue 5
  • DOI: 10.1002/biot.200900291

Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae
journal, December 2013


Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
journal, December 2010

  • Ha, S. -J.; Galazka, J. M.; Rin Kim, S.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 2
  • DOI: 10.1073/pnas.1010456108

Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae
journal, January 2007


Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms
journal, January 2017

  • Swinnen, Steve; Henriques, Sílvia F.; Shrestha, Ranjan
  • Microbial Cell Factories, Vol. 16, Issue 1
  • DOI: 10.1186/s12934-016-0621-5

Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
journal, January 2010

  • Yamada, Ryosuke; Taniguchi, Naho; Tanaka, Tsutomu
  • Microbial Cell Factories, Vol. 9, Issue 1
  • DOI: 10.1186/1475-2859-9-32

The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology
journal, December 2019


Recent Advances in Production of Bioethanol from Lignocellulosic Biomass
journal, April 2009

  • Kumar, S.; Singh, S. P.; Mishra, I. M.
  • Chemical Engineering & Technology, Vol. 32, Issue 4
  • DOI: 10.1002/ceat.200800442

Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation
journal, October 2016


Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production
journal, January 2013


Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
journal, January 2012

  • Koppram, Rakesh; Albers, Eva; Olsson, Lisbeth
  • Biotechnology for Biofuels, Vol. 5, Issue 1
  • DOI: 10.1186/1754-6834-5-32

Engineering yeast for efficient cellulose degradation
journal, January 1998