skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Short Barriers for Lowering Current-Density in Terahertz Quantum Cascade Lasers

Abstract

Scattering due to interface-roughness (IR) and longitudinal-optical (LO) phonons are primary transport mechanisms in terahertz quantum-cascade lasers (QCLs). By choosing GaAs/Al 0.10Ga 0.90As heterostructures with short-barriers, the effect of IR scattering is mitigated, leading to low operating current-densities. A series of resonant-phonon terahertz QCLs developed over time, achieving some of the lowest threshold and peak current-densities among published terahertz QCLs with maximum operating temperatures above 100 K. The best result is obtained for a three-well 3.1 THz QCL with threshold and peak current-densities of 134 A/cm 2 and 208 A/cm 2 respectively at 53 K, and a maximum lasing temperature of 135 K. Another three-well QCL designed for broadband bidirectional operation achieved lasing in a combined frequency range of 3.1–3.7 THz operating under both positive and negative polarities, with an operating current-density range of 167–322 A/cm 2 at 53 K and maximum lasing temperature of 141 K or 121 K depending on the polarity of the applied bias. By showing results from QCLs developed over a period of time, here we show conclusively that short-barrier terahertz QCLs are effective in achieving low current-density operation at the cost of a reduction in peak temperature performance.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]
  1. Lehigh Univ., Bethlehem, PA (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
OSTI Identifier:
1595937
Report Number(s):
[SAND-2020-0624J]
[Journal ID: ISSN 2304-6732; PHOTC5; 682968]
Grant/Contract Number:  
[AC04-94AL85000; NA0003525; ECCS 1609168; ECCS 1351142]
Resource Type:
Accepted Manuscript
Journal Name:
Photonics
Additional Journal Information:
[ Journal Volume: 7; Journal Issue: 1]; Journal ID: ISSN 2304-6732
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; terahertz lasers; quantum cascade lasers; interface roughness scattering; LO-phonon scattering

Citation Formats

Gao, Liang, Reno, John L., and Kumar, Sushil. Short Barriers for Lowering Current-Density in Terahertz Quantum Cascade Lasers. United States: N. p., 2020. Web. doi:10.3390/photonics7010007.
Gao, Liang, Reno, John L., & Kumar, Sushil. Short Barriers for Lowering Current-Density in Terahertz Quantum Cascade Lasers. United States. doi:10.3390/photonics7010007.
Gao, Liang, Reno, John L., and Kumar, Sushil. Wed . "Short Barriers for Lowering Current-Density in Terahertz Quantum Cascade Lasers". United States. doi:10.3390/photonics7010007. https://www.osti.gov/servlets/purl/1595937.
@article{osti_1595937,
title = {Short Barriers for Lowering Current-Density in Terahertz Quantum Cascade Lasers},
author = {Gao, Liang and Reno, John L. and Kumar, Sushil},
abstractNote = {Scattering due to interface-roughness (IR) and longitudinal-optical (LO) phonons are primary transport mechanisms in terahertz quantum-cascade lasers (QCLs). By choosing GaAs/Al0.10Ga0.90As heterostructures with short-barriers, the effect of IR scattering is mitigated, leading to low operating current-densities. A series of resonant-phonon terahertz QCLs developed over time, achieving some of the lowest threshold and peak current-densities among published terahertz QCLs with maximum operating temperatures above 100 K. The best result is obtained for a three-well 3.1 THz QCL with threshold and peak current-densities of 134 A/cm2 and 208 A/cm2 respectively at 53 K, and a maximum lasing temperature of 135 K. Another three-well QCL designed for broadband bidirectional operation achieved lasing in a combined frequency range of 3.1–3.7 THz operating under both positive and negative polarities, with an operating current-density range of 167–322 A/cm2 at 53 K and maximum lasing temperature of 141 K or 121 K depending on the polarity of the applied bias. By showing results from QCLs developed over a period of time, here we show conclusively that short-barrier terahertz QCLs are effective in achieving low current-density operation at the cost of a reduction in peak temperature performance.},
doi = {10.3390/photonics7010007},
journal = {Photonics},
number = [1],
volume = [7],
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation
journal, February 2003

  • Williams, Benjamin S.; Callebaut, Hans; Kumar, Sushil
  • Applied Physics Letters, Vol. 82, Issue 7
  • DOI: 10.1063/1.1554479

4.7-THz Local Oscillator for the GREAT Heterodyne Spectrometer on SOFIA
journal, July 2015

  • Richter, Heiko; Wienold, Martin; Schrottke, Lutz
  • IEEE Transactions on Terahertz Science and Technology, Vol. 5, Issue 4
  • DOI: 10.1109/TTHZ.2015.2442155

Tall-barrier terahertz quantum cascade lasers
journal, October 2013

  • Chan, Chun Wang I.; Hu, Qing; Reno, John L.
  • Applied Physics Letters, Vol. 103, Issue 15
  • DOI: 10.1063/1.4824878

186 K operation of terahertz quantum-cascade lasers based on a diagonal design
journal, March 2009

  • Kumar, Sushil; Hu, Qing; Reno, John L.
  • Applied Physics Letters, Vol. 94, Issue 13
  • DOI: 10.1063/1.3114418

Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction
journal, May 2005

  • Scalari, Giacomo; Hoyler, Nicolas; Giovannini, Marcella
  • Applied Physics Letters, Vol. 86, Issue 18
  • DOI: 10.1063/1.1920407

MBE growth of terahertz quantum cascade lasers
journal, May 2005


A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB
journal, December 2010

  • Kumar, Sushil; Chan, Chun Wang I.; Hu, Qing
  • Nature Physics, Vol. 7, Issue 2
  • DOI: 10.1038/nphys1846

A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler
journal, January 2010

  • Richter, H.; Greiner-Bär, M.; Pavlov, S. G.
  • Optics Express, Vol. 18, Issue 10
  • DOI: 10.1364/OE.18.010177

The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers
journal, January 2015


Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers
journal, December 2009


1.9THz quantum-cascade lasers with one-well injector
journal, March 2006

  • Kumar, Sushil; Williams, Benjamin S.; Hu, Qing
  • Applied Physics Letters, Vol. 88, Issue 12
  • DOI: 10.1063/1.2189671

Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling
journal, January 2012

  • Fathololoumi, S.; Dupont, E.; Chan, C. W. I.
  • Optics Express, Vol. 20, Issue 4
  • DOI: 10.1364/OE.20.003866

Quantum cascade lasers operating from 1.2to1.6THz
journal, September 2007

  • Walther, Christoph; Fischer, Milan; Scalari, Giacomo
  • Applied Physics Letters, Vol. 91, Issue 13
  • DOI: 10.1063/1.2793177

Terahertz quantum-cascade lasers based on a three-well active module
journal, January 2007

  • Luo, H.; Laframboise, S. R.; Wasilewski, Z. R.
  • Applied Physics Letters, Vol. 90, Issue 4
  • DOI: 10.1063/1.2437071

Influence of interface roughness in quantum cascade lasers
journal, September 2015

  • Krivas, K. A.; Winge, D. O.; Franckié, M.
  • Journal of Applied Physics, Vol. 118, Issue 11
  • DOI: 10.1063/1.4930572

Interface roughness scattering in GaAs/AlAs quantum wells
journal, December 1987

  • Sakaki, H.; Noda, T.; Hirakawa, K.
  • Applied Physics Letters, Vol. 51, Issue 23
  • DOI: 10.1063/1.98305

Terahertz semiconductor-heterostructure laser
journal, May 2002

  • Köhler, Rüdeger; Tredicucci, Alessandro; Beltram, Fabio
  • Nature, Vol. 417, Issue 6885
  • DOI: 10.1038/417156a

Thermoelectric-cooled terahertz quantum cascade lasers
journal, January 2019

  • Kainz, Martin A.; Semtsiv, Mykhaylo P.; Tsianos, Georgios
  • Optics Express, Vol. 27, Issue 15
  • DOI: 10.1364/OE.27.020688

Probing scattering mechanisms with symmetric quantum cascade lasers
journal, January 2013

  • Deutsch, Christoph; Detz, Hermann; Zederbauer, Tobias
  • Optics Express, Vol. 21, Issue 6
  • DOI: 10.1364/OE.21.007209

Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode
journal, January 2005


Temperature performance of terahertz quantum-cascade lasers with resonant-phonon active-regions
journal, September 2014


Photonic Engineering Technology for the Development of Terahertz Quantum Cascade Lasers
journal, July 2019

  • Zeng, Yongquan; Qiang, Bo; Wang, Qi Jie
  • Advanced Optical Materials, Vol. 8, Issue 3
  • DOI: 10.1002/adom.201900573

Influence of doping on the performance of terahertz quantum-cascade lasers
journal, March 2007

  • Benz, A.; Fasching, G.; Andrews, A. M.
  • Applied Physics Letters, Vol. 90, Issue 10
  • DOI: 10.1063/1.2711710

High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers
journal, September 2016

  • Khanal, Sudeep; Gao, Liang; Zhao, Le
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep32978

Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K
journal, January 2008

  • Belkin, Mikhail A.; Fan, Jonathan A.; Hormoz, Sahand
  • Optics Express, Vol. 16, Issue 5
  • DOI: 10.1364/OE.16.003242

Impact of interface roughness distributions on the operation of quantum cascade lasers
journal, January 2015

  • Franckié, Martin; Winge, David O.; Wolf, Johanna
  • Optics Express, Vol. 23, Issue 4
  • DOI: 10.1364/OE.23.005201

Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage
journal, December 2009


Step well quantum cascade laser emitting at 3 THz
journal, January 2009

  • Scalari, Giacomo; Amanti, Maria I.; Fischer, Milan
  • Applied Physics Letters, Vol. 94, Issue 4
  • DOI: 10.1063/1.3068496

Thermoelectrically cooled THz quantum cascade laser operating up to 210 K
journal, July 2019

  • Bosco, L.; Franckié, M.; Scalari, G.
  • Applied Physics Letters, Vol. 115, Issue 1
  • DOI: 10.1063/1.5110305