skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on January 10, 2021

Title: Focusing and imaging of cold neutrons with a permanent magnetic lens

Abstract

This paper reports imaging of objects with slow neutrons, specifically very cold neutrons (VCN) and cold neutrons (CN) at Institut Laue Langevin (ILL), using novel, permanent magnet (Nd 2Fe 14B) compound refractive lenses (MCRL) with a large 2.5 cm bore diameter. The MCRL focuses and images spin-up neutrons and defocuses spin-down neutrons, via a large, radial magnetic field gradient. A single lens neutron microscope, comprised of a MCRL objective lens with 2-fold magnification was tested, using very cold (slow) neutrons at 45 Å wavelength. One-to-one imaging was obtained using 16.7 Å, polarized neutrons. The magnetic field gradient of the MCRL was measured by raster-scanned pencil beams on D33. Finally, a compound neutron microscope was realized, using a MCRL condenser lens, which provided increased illumination of objects, and a MCRL as objective lens to produce 3.5-fold magnification.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5];  [6]
  1. Adelphi Technology, Inc., Redwood City, CA (United States)
  2. Technical Univ. of Munich (Germany)
  3. Univ. of Vienna (Austria)
  4. Inst. Laue-Langevin (ILL), Grenoble (France)
  5. Kyoto Univ. (Japan)
  6. Stanford Univ., CA (United States)
Publication Date:
Research Org.:
Adelphi Technology, Inc., Redwood City, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1595878
Grant/Contract Number:  
[SC0007684]
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
[ Journal Volume: 91; Journal Issue: 1]; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; magnetic neutron optics; magnetic neutron lenses; neutron microscope; neutron optics; focusing and imaging of cold neutrons; neutron lenses; polarized neutron microscope

Citation Formats

Cremer, Jay T., Filter, Hanno, Klepp, Jürgen, Geltenbort, Peter, Dewhurst, Charles, Oda, Tatsuro, and Pantell, Richard H. Focusing and imaging of cold neutrons with a permanent magnetic lens. United States: N. p., 2020. Web. doi:10.1063/1.5116759.
Cremer, Jay T., Filter, Hanno, Klepp, Jürgen, Geltenbort, Peter, Dewhurst, Charles, Oda, Tatsuro, & Pantell, Richard H. Focusing and imaging of cold neutrons with a permanent magnetic lens. United States. doi:10.1063/1.5116759.
Cremer, Jay T., Filter, Hanno, Klepp, Jürgen, Geltenbort, Peter, Dewhurst, Charles, Oda, Tatsuro, and Pantell, Richard H. Fri . "Focusing and imaging of cold neutrons with a permanent magnetic lens". United States. doi:10.1063/1.5116759.
@article{osti_1595878,
title = {Focusing and imaging of cold neutrons with a permanent magnetic lens},
author = {Cremer, Jay T. and Filter, Hanno and Klepp, Jürgen and Geltenbort, Peter and Dewhurst, Charles and Oda, Tatsuro and Pantell, Richard H.},
abstractNote = {This paper reports imaging of objects with slow neutrons, specifically very cold neutrons (VCN) and cold neutrons (CN) at Institut Laue Langevin (ILL), using novel, permanent magnet (Nd2Fe14B) compound refractive lenses (MCRL) with a large 2.5 cm bore diameter. The MCRL focuses and images spin-up neutrons and defocuses spin-down neutrons, via a large, radial magnetic field gradient. A single lens neutron microscope, comprised of a MCRL objective lens with 2-fold magnification was tested, using very cold (slow) neutrons at 45 Å wavelength. One-to-one imaging was obtained using 16.7 Å, polarized neutrons. The magnetic field gradient of the MCRL was measured by raster-scanned pencil beams on D33. Finally, a compound neutron microscope was realized, using a MCRL condenser lens, which provided increased illumination of objects, and a MCRL as objective lens to produce 3.5-fold magnification.},
doi = {10.1063/1.5116759},
journal = {Review of Scientific Instruments},
number = [1],
volume = [91],
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 10, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Refraction of Thermal Neutrons by Shaped Magnetic Fields
journal, May 1973


Optics of ultracold neutrons and the neutron-microscope problem
journal, February 1987


Ultracold-neutron microscopy
journal, February 1989


Development of neutron optical devices
journal, December 2002

  • Shimizu, H. M.
  • Applied Physics A: Materials Science & Processing, Vol. 74, Issue 0
  • DOI: 10.1007/s003390201741

Thermal neutron refraction by material prism
journal, November 2006


Hexapole magnet system for thermal energy 3He atom manipulation
journal, October 2001

  • Jardine, A. P.; Fouquet, P.; Ellis, J.
  • Review of Scientific Instruments, Vol. 72, Issue 10
  • DOI: 10.1063/1.1405794

Magnetic compound refractive lens for focusing and polarizing cold neutron beams
journal, March 2007

  • Littrell, K. C.; te Velthuis, S. G. E.; Felcher, G. P.
  • Review of Scientific Instruments, Vol. 78, Issue 3
  • DOI: 10.1063/1.2709844

Cancellation of gravity for slow neutrons in small angle scattering experiments
journal, January 1998


Compound refractive optics for the imaging and focusing of low-energy neutrons
journal, February 1998

  • Eskildsen, M. R.; Gammel, P. L.; Isaacs, E. D.
  • Nature, Vol. 391, Issue 6667
  • DOI: 10.1038/35333

Biological imaging with a neutron microscope
journal, July 2004

  • Cremer, J. T.; Piestrup, M. A.; Gary, C. K.
  • Applied Physics Letters, Vol. 85, Issue 3
  • DOI: 10.1063/1.1774254

Measured operational neutron energies of compound refractive lenses
journal, October 2006

  • Park, H.; Cremer, J. T.; Piestrup, M. A.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 251, Issue 2
  • DOI: 10.1016/j.nimb.2006.07.024

Simple microscope using a compound refractive lens and a wide-bandwidth thermal neutron beam
journal, April 2007

  • Cremer, J. T.; Park, H.; Piestrup, M. A.
  • Applied Physics Letters, Vol. 90, Issue 14
  • DOI: 10.1063/1.2719155

Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator
journal, January 2010

  • Cremer, J. T.; Williams, D. L.; Fuller, M. J.
  • Review of Scientific Instruments, Vol. 81, Issue 1
  • DOI: 10.1063/1.3274512

Holographic Gratings for Slow-Neutron Optics
journal, December 2012

  • Klepp, Juergen; Pruner, Christian; Tomita, Yasuo
  • Materials, Vol. 5, Issue 12
  • DOI: 10.3390/ma5122788

Characteristics of the thick, compound refractive lens
journal, January 2003

  • Pantell, Richard H.; Feinstein, Joseph; Beguiristain, H. Raul
  • Applied Optics, Vol. 42, Issue 4
  • DOI: 10.1364/ao.42.000719

D33—a third small-angle neutron scattering instrument at the Institut Laue Langevin
journal, January 2008


Neutron imaging using a conventional small-angle neutron scattering instrument
journal, April 2016


Towards a high-resolution TOF-MIEZE spectrometer with very cold neutrons
journal, July 2017

  • Oda, T.; Hino, M.; Kitaguchi, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 860
  • DOI: 10.1016/j.nima.2017.03.014

Wolter optics for neutron focusing
journal, April 2011

  • Mildner, D. F. R.; Gubarev, M. V.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 634, Issue 1
  • DOI: 10.1016/j.nima.2010.06.093

Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors
journal, September 2013

  • Liu, Dazhi; Khaykovich, Boris; Gubarev, Mikhail V.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3556

New fabrication method for an ellipsoidal neutron focusing mirror with a metal substrate
journal, January 2014

  • Guo, Jiang; Takeda, Shin; Morita, Shin-ya
  • Optics Express, Vol. 22, Issue 20
  • DOI: 10.1364/oe.22.024666

Figure correction of a metallic ellipsoidal neutron focusing mirror
journal, June 2015

  • Guo, Jiang; Yamagata, Yutaka; Morita, Shin-ya
  • Review of Scientific Instruments, Vol. 86, Issue 6
  • DOI: 10.1063/1.4922635

Development of a large plano-elliptical neutron-focusing supermirror with metallic substrates
journal, January 2016

  • Takeda, Shin; Yamagata, Yutaka; Yamada, Norifumi L.
  • Optics Express, Vol. 24, Issue 12
  • DOI: 10.1364/oe.24.012478

Pulsed neutron-beam focusing by modulating a permanent-magnet sextupole lens
journal, April 2015

  • Yamada, Masako; Iwashita, Yoshihisa; Ichikawa, Masahiro
  • Progress of Theoretical and Experimental Physics, Vol. 2015, Issue 4
  • DOI: 10.1093/ptep/ptv015

Development of precision elliptic neutron-focusing supermirror
journal, January 2017

  • Hosobata, Takuya; Yamada, Norifumi L.; Hino, Masahiro
  • Optics Express, Vol. 25, Issue 17
  • DOI: 10.1364/oe.25.020012

Elliptic neutron-focusing supermirror for illuminating small samples in neutron reflectometry
journal, January 2019

  • Hosobata, Takuya; Yamada, Norifumi L.; Hino, Masahiro
  • Optics Express, Vol. 27, Issue 19
  • DOI: 10.1364/oe.27.026807