skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on January 28, 2021

Title: Fast‐Charging and Ultrahigh‐Capacity Lithium Metal Anode Enabled by Surface Alloying

 [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2]
  1. Institute of Functional Nano &, Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow University Suzhou 215123 China
  2. Chemical Sciences and Engineering DivisionArgonne National Laboratory 9700 South, Cass Avenue Lemont IL 60439 USA
Publication Date:
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
Grant/Contract Number:  
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 10 Journal Issue: 8; Journal ID: ISSN 1614-6832
Wiley Blackwell (John Wiley & Sons)
Country of Publication:

Citation Formats

Xu, Tianhui, Gao, Peng, Li, Peirong, Xia, Kai, Han, Na, Deng, Jun, Li, Yanguang, and Lu, Jun. Fast‐Charging and Ultrahigh‐Capacity Lithium Metal Anode Enabled by Surface Alloying. Germany: N. p., 2020. Web. doi:10.1002/aenm.201902343.
Xu, Tianhui, Gao, Peng, Li, Peirong, Xia, Kai, Han, Na, Deng, Jun, Li, Yanguang, & Lu, Jun. Fast‐Charging and Ultrahigh‐Capacity Lithium Metal Anode Enabled by Surface Alloying. Germany. doi:10.1002/aenm.201902343.
Xu, Tianhui, Gao, Peng, Li, Peirong, Xia, Kai, Han, Na, Deng, Jun, Li, Yanguang, and Lu, Jun. Wed . "Fast‐Charging and Ultrahigh‐Capacity Lithium Metal Anode Enabled by Surface Alloying". Germany. doi:10.1002/aenm.201902343.
title = {Fast‐Charging and Ultrahigh‐Capacity Lithium Metal Anode Enabled by Surface Alloying},
author = {Xu, Tianhui and Gao, Peng and Li, Peirong and Xia, Kai and Han, Na and Deng, Jun and Li, Yanguang and Lu, Jun},
abstractNote = {},
doi = {10.1002/aenm.201902343},
journal = {Advanced Energy Materials},
number = 8,
volume = 10,
place = {Germany},
year = {2020},
month = {1}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 28, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Review on High-Loading and High-Energy Lithium-Sulfur Batteries
journal, May 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Cheng, Xin-Bing
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201700260

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017

Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries
journal, April 2018

Tuning the LUMO Energy of an Organic Interphase to Stabilize Lithium Metal Batteries
journal, February 2019

Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries
journal, June 2017

A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017

Self-Stabilized Solid Electrolyte Interface on a Host-Free Li-Metal Anode toward High Areal Capacity and Rate Utilization
journal, May 2018

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode
journal, January 2013

  • Ding, Fei; Xu, Wu; Chen, Xilin
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.100310jes

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance
journal, June 2016

Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016

Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes
journal, May 2017

  • Zhang, Rui; Chen, Xiao-Ru; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 56, Issue 27
  • DOI: 10.1002/anie.201702099

A Hierarchical Silver-Nanowire-Graphene Host Enabling Ultrahigh Rates and Superior Long-Term Cycling of Lithium-Metal Composite Anodes
journal, September 2018

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976

Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode
journal, May 2017

Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes
journal, November 2018

Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes
journal, June 2018

The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode
journal, April 2008

Fast ion transport at solid–solid interfaces in hybrid battery anodes
journal, March 2018

Highly reversible Na and K metal anodes enabled by carbon paper protection
journal, November 2018

A Highly Reversible Lithium Metal Anode
journal, January 2014

  • Park, Min Sik; Ma, Sang Bok; Lee, Dong Joon
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03815

Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon
journal, May 2017

25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries
journal, August 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Nix, William D.
  • Advanced Materials, Vol. 25, Issue 36
  • DOI: 10.1002/adma.201301795

Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes
journal, August 2018

  • Pu, Jun; Li, Jiachen; Shen, Zihan
  • Advanced Functional Materials, Vol. 28, Issue 41
  • DOI: 10.1002/adfm.201804133

More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects
journal, April 2017

  • Fang, Ruopian; Zhao, Shiyong; Sun, Zhenhua
  • Advanced Materials, Vol. 29, Issue 48
  • DOI: 10.1002/adma.201606823

Amorphous MoS 3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries
journal, November 2017

  • Ye, Hualin; Ma, Lu; Zhou, Yu
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 50
  • DOI: 10.1073/pnas.1711917114

Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes
journal, November 2018

2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries
journal, February 2018

Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid
journal, July 2017

Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017

Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution
journal, May 2017

Roughning and smoothing dynamics during KOH silicon etching
journal, April 1999

Cellulose-Based Porous Membrane for Suppressing Li Dendrite Formation in Lithium–Sulfur Battery
journal, August 2016

Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework
journal, September 2017

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Li Ion Diffusion in the Anode Material Li 12 Si 7 : Ultrafast Quasi-1D Diffusion and Two Distinct Fast 3D Jump Processes Separately Revealed by 7 Li NMR Relaxometry
journal, July 2011

  • Kuhn, Alexander; Sreeraj, Puravankara; Pöttgen, Rainer
  • Journal of the American Chemical Society, Vol. 133, Issue 29
  • DOI: 10.1021/ja2020108

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes
journal, May 2018

  • Shi, Qiuwei; Zhong, Yiren; Wu, Min
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 22
  • DOI: 10.1073/pnas.1803634115

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017

III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid
journal, January 1901

  • Sand, Henry J. S.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 1, Issue 1
  • DOI: 10.1080/14786440109462590

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Stable Lithium Electrodeposition at Ultra-High Current Densities Enabled by 3D PMF/Li Composite Anode
journal, February 2018

  • Fan, Lei; Zhuang, Houlong L.; Zhang, Weidong
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703360