skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on January 24, 2021

Title: Interdigitated conducting tetrathiafulvalene-based coordination networks

Abstract

The electronic conductivity of two isostructural interdigitated coordination polymers based on a novel tetrathiafulvalene derivative and M(NCS) 2 nodes (M = Fe, Co) is enhanced upon surface oxidation of the crystals by iodine.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Université de Strasbourg, CNRS, CMC UMR 7140, Laboratoire de Tectonique Moléculaire, Strasbourg
  2. Massachusetts Institute of Technology, Department of Chemistry, Cambridge, USA
  3. Université de Strasbourg, CNRS, UMR 7177, Laboratoire POMAM, F-67000 Strasbourg
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1595858
Grant/Contract Number:  
SC0018235
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Name: ChemComm; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Bechu, Damien, Xie, Lilia S., Le Breton, Nolwenn, Choua, Sylvie, Dincă, Mircea, Hosseini, Mir Wais, and Baudron, Stéphane A. Interdigitated conducting tetrathiafulvalene-based coordination networks. United Kingdom: N. p., 2020. Web. doi:10.1039/C9CC09960C.
Bechu, Damien, Xie, Lilia S., Le Breton, Nolwenn, Choua, Sylvie, Dincă, Mircea, Hosseini, Mir Wais, & Baudron, Stéphane A. Interdigitated conducting tetrathiafulvalene-based coordination networks. United Kingdom. doi:10.1039/C9CC09960C.
Bechu, Damien, Xie, Lilia S., Le Breton, Nolwenn, Choua, Sylvie, Dincă, Mircea, Hosseini, Mir Wais, and Baudron, Stéphane A. Wed . "Interdigitated conducting tetrathiafulvalene-based coordination networks". United Kingdom. doi:10.1039/C9CC09960C.
@article{osti_1595858,
title = {Interdigitated conducting tetrathiafulvalene-based coordination networks},
author = {Bechu, Damien and Xie, Lilia S. and Le Breton, Nolwenn and Choua, Sylvie and Dincă, Mircea and Hosseini, Mir Wais and Baudron, Stéphane A.},
abstractNote = {The electronic conductivity of two isostructural interdigitated coordination polymers based on a novel tetrathiafulvalene derivative and M(NCS) 2 nodes (M = Fe, Co) is enhanced upon surface oxidation of the crystals by iodine.},
doi = {10.1039/C9CC09960C},
journal = {ChemComm},
number = ,
volume = ,
place = {United Kingdom},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 24, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Increased Electrical Conductivity in a Mesoporous Metal–Organic Framework Featuring Metallacarboranes Guests
journal, February 2018

  • Kung, Chung-Wei; Otake, Kenichi; Buru, Cassandra T.
  • Journal of the American Chemical Society, Vol. 140, Issue 11
  • DOI: 10.1021/jacs.8b00605

Straightforward access to aryl-substituted tetrathiafulvalenes by palladium-catalysed direct C–H arylation and their photophysical and electrochemical properties
journal, January 2011

  • Mitamura, Yukihiro; Yorimitsu, Hideki; Oshima, Koichiro
  • Chemical Science, Vol. 2, Issue 10
  • DOI: 10.1039/c1sc00372k

Redox Activities of Metal–Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers
journal, February 2019


Metal–organic frameworks: functional luminescent and photonic materials for sensing applications
journal, January 2017

  • Lustig, William P.; Mukherjee, Soumya; Rudd, Nathan D.
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C6CS00930A

Superconductivity in a Copper(II)-Based Coordination Polymer with Perfect Kagome Structure
journal, December 2017

  • Huang, Xing; Zhang, Shuai; Liu, Liyao
  • Angewandte Chemie International Edition, Vol. 57, Issue 1
  • DOI: 10.1002/anie.201707568

Electrical conductive coordination polymers
journal, January 2012

  • Givaja, Gonzalo; Amo-Ochoa, Pilar; Gómez-García, Carlos J.
  • Chem. Soc. Rev., Vol. 41, Issue 1
  • DOI: 10.1039/C1CS15092H

A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions
journal, September 2011

  • Allendorf, Mark D.; Schwartzberg, Adam; Stavila, Vitalie
  • Chemistry - A European Journal, Vol. 17, Issue 41, p. 11372-11388
  • DOI: 10.1002/chem.201101595

Principles that Govern Electronic Transport in Organic Conductors and Transistors
journal, September 2016


An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof
journal, January 2018

  • Bhardwaj, Sanjeev K.; Bhardwaj, Neha; Kaur, Rajnish
  • Journal of Materials Chemistry A, Vol. 6, Issue 31
  • DOI: 10.1039/C8TA04220A

Metal–Organic Frameworks (MOFs)
journal, January 2014

  • Zhou, Hong-Cai “Joe”; Kitagawa, Susumu
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS90059F

Electronic, Structural and Functional Versatility in Tetrathiafulvalene‐Lanthanide Metal–Organic Frameworks
journal, August 2019

  • Castells‐Gil, Javier; Mañas‐Valero, Samuel; Vitórica‐Yrezábal, Iñigo J.
  • Chemistry – A European Journal, Vol. 25, Issue 54
  • DOI: 10.1002/chem.201902855

Photo- and Electronically Switchable Spin-Crossover Iron(II) Metal-Organic Frameworks Based on a Tetrathiafulvalene Ligand
journal, April 2017

  • Wang, Hai-Ying; Ge, Jing-Yuan; Hua, Carol
  • Angewandte Chemie International Edition, Vol. 56, Issue 20
  • DOI: 10.1002/anie.201611824

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices
journal, May 2017


Electron Spin Resonance:  A Major Probe for Molecular Conductors
journal, November 2004

  • Coulon, Claude; Clérac, Rodolphe
  • Chemical Reviews, Vol. 104, Issue 11
  • DOI: 10.1021/cr030639w

Redox-switchable breathing behavior in tetrathiafulvalene-based metal–organic frameworks
journal, December 2017


Metal Organic Framework Catalysis: Quo vadis ?
journal, December 2013

  • Gascon, Jorge; Corma, Avelino; Kapteijn, Freek
  • ACS Catalysis, Vol. 4, Issue 2, p. 361-378
  • DOI: 10.1021/cs400959k

Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts
journal, May 2009

  • Lorcy, Dominique; Bellec, Nathalie; Fourmigué, Marc
  • Coordination Chemistry Reviews, Vol. 253, Issue 9-10
  • DOI: 10.1016/j.ccr.2008.09.012

Controlling charge separation in a novel donor–acceptor metal–organic framework via redox modulation
journal, January 2014

  • Leong, C. F.; Chan, B.; Faust, T. B.
  • Chem. Sci., Vol. 5, Issue 12
  • DOI: 10.1039/C4SC01551G

Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metal-Organic Frameworks
journal, August 2018


Electrical conductivity and electroluminescence of a new anthracene-based metal–organic framework with π-conjugated zigzag chains
journal, January 2016

  • Chen, Dashu; Xing, Hongzhu; Su, Zhongmin
  • Chemical Communications, Vol. 52, Issue 10
  • DOI: 10.1039/C5CC09065B

Redox Active Metal- and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity
journal, September 2017

  • Zhang, Yugen; Riduan, Siti Nurhanna; Wang, Jinquan
  • Chemistry - A European Journal, Vol. 23, Issue 65
  • DOI: 10.1002/chem.201702919

Functional coordination polymers based on redox-active tetrathiafulvalene and its derivatives
journal, August 2017


An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors
journal, January 2017

  • Stassen, Ivo; Burtch, Nicholas; Talin, Alec
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00122C

Interpenetrating metal–organic frameworks
journal, January 2016

  • Gong, Yun-Nan; Zhong, Di-Chang; Lu, Tong-Bu
  • CrystEngComm, Vol. 18, Issue 15
  • DOI: 10.1039/C6CE00371K

3-D Coordination Polymers Based on the Tetrathiafulvalenetetracarboxylate (TTF-TC) Derivative: Synthesis, Characterization, and Oxidation Issues
journal, August 2010

  • Nguyen, Thi Le Anh; Demir-Cakan, Rezan; Devic, Thomas
  • Inorganic Chemistry, Vol. 49, Issue 15
  • DOI: 10.1021/ic100950n

Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage
journal, January 2017

  • Zhou, Junwen; Wang, Bo
  • Chemical Society Reviews, Vol. 46, Issue 22
  • DOI: 10.1039/C7CS00283A

Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry
journal, September 2018

  • Pedersen, Kasper S.; Perlepe, Panagiota; Aubrey, Michael L.
  • Nature Chemistry, Vol. 10, Issue 10
  • DOI: 10.1038/s41557-018-0107-7

High Charge Mobility in a Tetrathiafulvalene-Based Microporous Metal–Organic Framework
journal, July 2012

  • Narayan, Tarun C.; Miyakai, Tomoyo; Seki, Shu
  • Journal of the American Chemical Society, Vol. 134, Issue 31
  • DOI: 10.1021/ja3059827

Metal–Organic Frameworks in Solid–Gas Phase Catalysis
journal, November 2018


Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks
journal, January 2015

  • Park, Sarah S.; Hontz, Eric R.; Sun, Lei
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja512437u

Introduction:  Molecular Conductors
journal, November 2004


Structure-Packing-Property Correlation of Self-Sorted Versus Interdigitated Assembly in TTF⋅TCNQ-Based Charge-Transport Materials
journal, February 2018

  • Niyas, M. A.; Ramakrishnan, Remya; Vijay, Vishnu
  • Chemistry - A European Journal, Vol. 24, Issue 47
  • DOI: 10.1002/chem.201705537

Interpenetrating Nets: Ordered, Periodic Entanglement
journal, June 1998


Interpenetration control in metal–organic frameworks for functional applications
journal, August 2013

  • Jiang, Hai-Long; Makal, Trevor A.; Zhou, Hong-Cai
  • Coordination Chemistry Reviews, Vol. 257, Issue 15-16
  • DOI: 10.1016/j.ccr.2013.03.017

Metal-Organic Frameworks for Separation
journal, March 2018

  • Zhao, Xiang; Wang, Yanxiang; Li, Dong-Sheng
  • Advanced Materials, Vol. 30, Issue 37
  • DOI: 10.1002/adma.201705189

Towards Conducting Metal-Organic Frameworks
journal, January 2011

  • D'Alessandro, Deanna M.; Kanga, Jehan R. R.; Caddy, James S.
  • Australian Journal of Chemistry, Vol. 64, Issue 6
  • DOI: 10.1071/CH11039

Electron delocalization and charge mobility as a function of reduction in a metal–organic framework
journal, June 2018


High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu 3 BTC 2 micropores
journal, January 2018

  • Schneider, Christian; Ukaj, Dardan; Koerver, Raimund
  • Chemical Science, Vol. 9, Issue 37
  • DOI: 10.1039/C8SC02471E

Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges
journal, December 2017


Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices
journal, December 2013

  • Talin, A. Alec; Centrone, Andrea; Ford, Alexandra C.
  • Science, Vol. 343, Issue 6166, p. 66-69
  • DOI: 10.1126/science.1246738

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Sequential Functionalisation of Bis-Protected Tetrathiafulvalene-dithiolates
journal, March 1996

  • Simonsen, Klaus B.; Svenstrup, Niels; Lau, Jesper
  • Synthesis, Vol. 1996, Issue 03
  • DOI: 10.1055/s-1996-4216

Cooperative Bond Scission in a Soft Porous Crystal Enables Discriminatory Gate Opening for Ethylene over Ethane
journal, November 2017

  • Sen, Susan; Hosono, Nobuhiko; Zheng, Jia-Jia
  • Journal of the American Chemical Society, Vol. 139, Issue 50
  • DOI: 10.1021/jacs.7b10110

Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework
journal, July 2010

  • Kobayashi, Yoji; Jacobs, Benjamin; Allendorf, Mark D.
  • Chemistry of Materials, Vol. 22, Issue 14
  • DOI: 10.1021/cm101238m

Signature of Metallic Behavior in the Metal–Organic Frameworks M 3 (hexaiminobenzene) 2 (M = Ni, Cu)
journal, September 2017

  • Dou, Jin-Hu; Sun, Lei; Ge, Yicong
  • Journal of the American Chemical Society, Vol. 139, Issue 39
  • DOI: 10.1021/jacs.7b07234

Measuring and Reporting Electrical Conductivity in Metal–Organic Frameworks: Cd 2 (TTFTB) as a Case Study
journal, October 2016

  • Sun, Lei; Park, Sarah S.; Sheberla, Dennis
  • Journal of the American Chemical Society, Vol. 138, Issue 44
  • DOI: 10.1021/jacs.6b09345

Diverse π–π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal–organic frameworks
journal, January 2019

  • Xie, Lilia S.; Alexandrov, Eugeny V.; Skorupskii, Grigorii
  • Chemical Science, Vol. 10, Issue 37
  • DOI: 10.1039/C9SC03348C

Electrically Conductive Porous Metal-Organic Frameworks
journal, January 2016

  • Sun, Lei; Campbell, Michael G.; Dincă, Mircea
  • Angewandte Chemie International Edition, Vol. 55, Issue 11
  • DOI: 10.1002/anie.201506219

Exploiting redox activity in metal–organic frameworks: concepts, trends and perspectives
journal, January 2016


Metal organic frameworks for electrochemical applications
journal, January 2012

  • Morozan, Adina; Jaouen, Frédéric
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee22989g

Photocurrent responsive supramolecular coordination networks with redox-active tetrathiafulvalene cores
journal, February 2019


Soft porous crystals
journal, November 2009

  • Horike, Satoshi; Shimomura, Satoru; Kitagawa, Susumu
  • Nature Chemistry, Vol. 1, Issue 9, p. 695-704
  • DOI: 10.1038/nchem.444