DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biogenic Iron Sulfide Nanoparticles to Enable Extracellular Electron Uptake in Sulfate‐Reducing Bacteria

Abstract

Abstract Microbes synthesize cell‐associated nanoparticles (NPs) and utilize their physicochemical properties to produce energy under unfavorable metabolic conditions. Iron sulfide (FeS) NPs are ubiquitous and are predominantly biosynthesized by sulfate‐reducing bacteria (SRB). However, the biological role of FeS NPs in SRB remains understudied. Now, conductive FeS NPs function is demonstrated as an electron conduit enabling Desulfovibrio vulgaris Hildenborough, an SRB strain, to utilize solid‐state electron donors via direct electron uptake. After forming FeS NPs on the cell surface, D. vulgaris initiated current generation coupled with sulfate reduction on electrodes poised at −0.4 V versus standard hydrogen electrode. Single‐cell activity analysis showed that the electron uptake and metabolic rate via FeS NPs in D. vulgaris were about sevenfold higher than those via native cell‐surface proteins in other SRB.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4]
  1. National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan, Department of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan, CSIRO Land and Water 147 Underwood Avenue Floreat WA 6014 Australia
  2. Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
  3. CSIRO Land and Water 147 Underwood Avenue Floreat WA 6014 Australia, School of Biomedical Sciences University of Western Australia 35 Stirling Highway Nedlands WA 6009 Australia
  4. National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan, School of Chemical Sciences and Engineering Hokkaido University 5 Chome Kita 8 Jonishi, Kita Ward Sapporo Hokkaido 060-0808 Japan
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1595526
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 132 Journal Issue: 15; Journal ID: ISSN 0044-8249
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Deng, Xiao, Dohmae, Naoshi, Kaksonen, Anna H., and Okamoto, Akihiro. Biogenic Iron Sulfide Nanoparticles to Enable Extracellular Electron Uptake in Sulfate‐Reducing Bacteria. Germany: N. p., 2020. Web. doi:10.1002/ange.201915196.
Deng, Xiao, Dohmae, Naoshi, Kaksonen, Anna H., & Okamoto, Akihiro. Biogenic Iron Sulfide Nanoparticles to Enable Extracellular Electron Uptake in Sulfate‐Reducing Bacteria. Germany. https://doi.org/10.1002/ange.201915196
Deng, Xiao, Dohmae, Naoshi, Kaksonen, Anna H., and Okamoto, Akihiro. Tue . "Biogenic Iron Sulfide Nanoparticles to Enable Extracellular Electron Uptake in Sulfate‐Reducing Bacteria". Germany. https://doi.org/10.1002/ange.201915196.
@article{osti_1595526,
title = {Biogenic Iron Sulfide Nanoparticles to Enable Extracellular Electron Uptake in Sulfate‐Reducing Bacteria},
author = {Deng, Xiao and Dohmae, Naoshi and Kaksonen, Anna H. and Okamoto, Akihiro},
abstractNote = {Abstract Microbes synthesize cell‐associated nanoparticles (NPs) and utilize their physicochemical properties to produce energy under unfavorable metabolic conditions. Iron sulfide (FeS) NPs are ubiquitous and are predominantly biosynthesized by sulfate‐reducing bacteria (SRB). However, the biological role of FeS NPs in SRB remains understudied. Now, conductive FeS NPs function is demonstrated as an electron conduit enabling Desulfovibrio vulgaris Hildenborough, an SRB strain, to utilize solid‐state electron donors via direct electron uptake. After forming FeS NPs on the cell surface, D. vulgaris initiated current generation coupled with sulfate reduction on electrodes poised at −0.4 V versus standard hydrogen electrode. Single‐cell activity analysis showed that the electron uptake and metabolic rate via FeS NPs in D. vulgaris were about sevenfold higher than those via native cell‐surface proteins in other SRB.},
doi = {10.1002/ange.201915196},
journal = {Angewandte Chemie},
number = 15,
volume = 132,
place = {Germany},
year = {Tue Jan 28 00:00:00 EST 2020},
month = {Tue Jan 28 00:00:00 EST 2020}
}

Works referenced in this record:

The X-ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe-mineral interface
journal, April 2014


Electrical and Magnetic Properties of Sulfides
journal, January 2006


Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria
journal, January 2013


Flavin Redox Bifurcation as a Mechanism for Controlling the Direction of Electron Flow during Extracellular Electron Transfer
journal, August 2014

  • Okamoto, Akihiro; Hashimoto, Kazuhito; Nealson, Kenneth H.
  • Angewandte Chemie International Edition, Vol. 53, Issue 41
  • DOI: 10.1002/anie.201407004

Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors
journal, February 2018


Silver-based crystalline nanoparticles, microbially fabricated
journal, November 1999

  • Klaus, T.; Joerger, R.; Olsson, E.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 24
  • DOI: 10.1073/pnas.96.24.13611

Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis : Application for Click Chemistry
journal, January 2018

  • Kimber, Richard L.; Lewis, Edward A.; Parmeggiani, Fabio
  • Small, Vol. 14, Issue 10
  • DOI: 10.1002/smll.201703145

Cell Death from Antibiotics Without the Involvement of Reactive Oxygen Species
journal, March 2013


Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex
journal, July 2006


Low-temperature sulphate reduction: biological versus abiological
journal, December 1985

  • Trudinger, P. A.; Chambers, L. A.; Smith, J. W.
  • Canadian Journal of Earth Sciences, Vol. 22, Issue 12
  • DOI: 10.1139/e85-207

A Role for Microbial Palladium Nanoparticles in Extracellular Electron Transfer
journal, December 2010

  • Wu, Xuee; Zhao, Feng; Rahunen, Nelli
  • Angewandte Chemie International Edition, Vol. 50, Issue 2
  • DOI: 10.1002/anie.201002951

Microbial interspecies electron transfer via electric currents through conductive minerals
journal, June 2012

  • Kato, S.; Hashimoto, K.; Watanabe, K.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 25
  • DOI: 10.1073/pnas.1117592109

Division-Based, Growth Rate Diversity in Bacteria
journal, May 2018

  • Gangwe Nana, Ghislain Y.; Ripoll, Camille; Cabin-Flaman, Armelle
  • Frontiers in Microbiology, Vol. 9
  • DOI: 10.3389/fmicb.2018.00849

Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria
journal, May 2000

  • Watson, J. H. P.; Cressey, B. A.; Roberts, A. P.
  • Journal of Magnetism and Magnetic Materials, Vol. 214, Issue 1-2
  • DOI: 10.1016/S0304-8853(00)00025-1

What Do We Really Know about the Role of Microorganisms in Iron Sulfide Mineral Formation?
journal, June 2016


Structure of a bacterial cell surface decaheme electron conduit
journal, May 2011

  • Clarke, T. A.; Edwards, M. J.; Gates, A. J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 23
  • DOI: 10.1073/pnas.1017200108

Nanosized strongly-magnetic bacterially-produced iron sulfide materials
journal, August 1999

  • Watson, J. H. P.; Ellwood, D. C.; Soper, A. K.
  • Journal of Magnetism and Magnetic Materials, Vol. 203, Issue 1-3
  • DOI: 10.1016/S0304-8853(99)00191-2

The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough
journal, April 2004

  • Heidelberg, John F.; Seshadri, Rekha; Haveman, Shelley A.
  • Nature Biotechnology, Vol. 22, Issue 5
  • DOI: 10.1038/nbt959

Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris
journal, May 2014


Iron corrosion by novel anaerobic microorganisms
journal, February 2004

  • Dinh, Hang T.; Kuever, Jan; Mußmann, Marc
  • Nature, Vol. 427, Issue 6977
  • DOI: 10.1038/nature02321

Sedimentary pyrite formation: An update
journal, April 1984


Geophysical Imaging of Stimulated Microbial Biomineralization
journal, October 2005

  • Williams, Kenneth H.; Ntarlagiannis, Dimitrios; Slater, Lee D.
  • Environmental Science & Technology, Vol. 39, Issue 19
  • DOI: 10.1021/es0504035

Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite
journal, January 2018


Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria
journal, January 1998


ADesulfovibrio sp. capable of growing by reducing U(VI)
journal, December 1999


Magnetotactic bacteria
journal, October 1975


Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides
journal, February 2015


Multi-heme cytochromes provide a pathway for survival in energy-limited environments
journal, February 2018

  • Deng, Xiao; Dohmae, Naoshi; Nealson, Kenneth H.
  • Science Advances, Vol. 4, Issue 2
  • DOI: 10.1126/sciadv.aao5682

Electron Extraction from an Extracellular Electrode by Desulfovibrio ferrophilus Strain IS5 Without Using Hydrogen as an Electron Carrier
journal, January 2015


Mineralization of organic matter in the sea bed—the role of sulphate reduction
journal, April 1982


Redox Linked Flavin Sites in Extracellular Decaheme Proteins Involved in Microbe-Mineral Electron Transfer.
journal, July 2015

  • Edwards, Marcus J.; White, Gaye F.; Norman, Michael
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11677

Flavin Redox Bifurcation as a Mechanism for Controlling the Direction of Electron Flow during Extracellular Electron Transfer
journal, August 2014

  • Okamoto, Akihiro; Hashimoto, Kazuhito; Nealson, Kenneth H.
  • Angewandte Chemie, Vol. 126, Issue 41
  • DOI: 10.1002/ange.201407004

A Role for Microbial Palladium Nanoparticles in Extracellular Electron Transfer
journal, December 2010