skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on January 21, 2021

Title: Direct detection of dark matter substructure in strong lens images with convolutional neural networks

Abstract

Strong gravitational lensing is a potential way of uncovering the nature of dark matter, by finding perturbations to images that cannot be accounted for well by modeling the lens galaxy without additional structure, be it subhalos (smaller halos within the smooth lens) or line-of-sight (LOS) halos. Here, we introduce results attempting to infer the presence of substructure from images without requiring an intermediate step in which a smooth model has to be subtracted, using a simple convolutional neural network (CNN). We find that the network is only able to infer the presence of subhalos with greater than 75% accuracy when they have masses of greater than or equal to 5 × 10 9M if they lie within the main lens galaxy. Since less massive foreground LOS halos can have the same effect as higher-mass subhalos, the CNN can probe lower masses in the halo mass function. The accuracy does not improve significantly if we add a population of less massive subhalos. With the expectation of experiments such as Hubble Space Telescope and Euclid yielding thousands of high-quality strong lensing images in the next years, having a way of analyzing images quickly to identify candidates that merit further analysis tomore » determine individual subhalo properties while preventing extensive resources being used for images that would yield null detections could be very useful. By understanding the sensitivity as a function of substructure mass, nondetections could be combined with the information from images with substructure to constrain the cold dark matter scenario, in particular if the sensitivity can be pushed to lower masses.« less

Authors:
ORCiD logo [1];  [1]
  1. Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1595442
Grant/Contract Number:  
SC0020223
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 101; Journal Issue: 2; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Diaz Rivero, Ana, and Dvorkin, Cora. Direct detection of dark matter substructure in strong lens images with convolutional neural networks. United States: N. p., 2020. Web. doi:10.1103/PhysRevD.101.023515.
Diaz Rivero, Ana, & Dvorkin, Cora. Direct detection of dark matter substructure in strong lens images with convolutional neural networks. United States. doi:10.1103/PhysRevD.101.023515.
Diaz Rivero, Ana, and Dvorkin, Cora. Tue . "Direct detection of dark matter substructure in strong lens images with convolutional neural networks". United States. doi:10.1103/PhysRevD.101.023515.
@article{osti_1595442,
title = {Direct detection of dark matter substructure in strong lens images with convolutional neural networks},
author = {Diaz Rivero, Ana and Dvorkin, Cora},
abstractNote = {Strong gravitational lensing is a potential way of uncovering the nature of dark matter, by finding perturbations to images that cannot be accounted for well by modeling the lens galaxy without additional structure, be it subhalos (smaller halos within the smooth lens) or line-of-sight (LOS) halos. Here, we introduce results attempting to infer the presence of substructure from images without requiring an intermediate step in which a smooth model has to be subtracted, using a simple convolutional neural network (CNN). We find that the network is only able to infer the presence of subhalos with greater than 75% accuracy when they have masses of greater than or equal to 5 × 109M⊙ if they lie within the main lens galaxy. Since less massive foreground LOS halos can have the same effect as higher-mass subhalos, the CNN can probe lower masses in the halo mass function. The accuracy does not improve significantly if we add a population of less massive subhalos. With the expectation of experiments such as Hubble Space Telescope and Euclid yielding thousands of high-quality strong lensing images in the next years, having a way of analyzing images quickly to identify candidates that merit further analysis to determine individual subhalo properties while preventing extensive resources being used for images that would yield null detections could be very useful. By understanding the sensitivity as a function of substructure mass, nondetections could be combined with the information from images with substructure to constrain the cold dark matter scenario, in particular if the sensitivity can be pushed to lower masses.},
doi = {10.1103/PhysRevD.101.023515},
journal = {Physical Review D},
number = 2,
volume = 101,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 21, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Projection effects in the strong lensing study of subhaloes
journal, March 2017

  • Li, Ran; Frenk, Carlos S.; Cole, Shaun
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 2
  • DOI: 10.1093/mnras/stx554

Detecting the Disruption of Dark-Matter Halos with Stellar Streams
journal, March 2016


Power spectrum of dark matter substructure in strong gravitational lenses
journal, January 2018


Dark Matter Substructure and Dwarf Galactic Satellites
journal, January 2010


The Structure of Cold Dark Matter Halos
journal, May 1996

  • Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M.
  • The Astrophysical Journal, Vol. 462
  • DOI: 10.1086/177173

The Milky Way’s bright satellites as an apparent failure of ΛCDM: The MW’s bright satellites in ΛCDM
journal, March 2012

  • Boylan-Kolchin, Michael; Bullock, James S.; Kaplinghat, Manoj
  • Monthly Notices of the Royal Astronomical Society, Vol. 422, Issue 2
  • DOI: 10.1111/j.1365-2966.2012.20695.x

Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear
journal, August 2018


Direct Detection of Cold Dark Matter Substructure
journal, June 2002

  • Dalal, N.; Kochanek, C. S.
  • The Astrophysical Journal, Vol. 572, Issue 1
  • DOI: 10.1086/340303

Measuring the power spectrum of dark matter substructure using strong gravitational lensing
journal, November 2016

  • Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert
  • Journal of Cosmology and Astroparticle Physics, Vol. 2016, Issue 11
  • DOI: 10.1088/1475-7516/2016/11/048

Using convolutional neural networks to identify gravitational lenses in astronomical images
journal, May 2019

  • Davies, Andrew; Serjeant, Stephen; Bromley, Jane M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 487, Issue 4
  • DOI: 10.1093/mnras/stz1288

Gravitational lensing and the power spectrum of dark matter substructure: Insights from the ETHOS N -body simulations
journal, November 2018


Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys: Lensed quasars and supernovae
journal, April 2010


lenstronomy: Multi-purpose gravitational lens modelling software package
journal, December 2018


Low-mass halo perturbations in strong gravitational lenses at redshift z  ∼ 0.5 are consistent with CDM
journal, February 2019

  • Ritondale, E.; Vegetti, S.; Despali, G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 485, Issue 2
  • DOI: 10.1093/mnras/stz464

Data-driven Reconstruction of Gravitationally Lensed Galaxies Using Recurrent Inference Machines
journal, September 2019

  • Morningstar, Warren R.; Levasseur, Laurence Perreault; Hezaveh, Yashar D.
  • The Astrophysical Journal, Vol. 883, Issue 1
  • DOI: 10.3847/1538-4357/ab35d7

ETHOS – an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems
journal, May 2016

  • Vogelsberger, Mark; Zavala, Jesús; Cyr-Racine, Francis-Yan
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 2
  • DOI: 10.1093/mnras/stw1076

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample
journal, March 2017

  • Alam, Shadab; Ata, Metin; Bailey, Stephen
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 3
  • DOI: 10.1093/mnras/stx721

A 7 deg2 survey for galaxy-scale gravitational lenses with the HST imaging archive★
journal, February 2014

  • Pawase, R. S.; Courbin, F.; Faure, C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 439, Issue 4
  • DOI: 10.1093/mnras/stu179

Gravitational detection of a low-mass dark satellite galaxy at cosmological distance
journal, January 2012

  • Vegetti, S.; Lagattuta, D. J.; McKean, J. P.
  • Nature, Vol. 481, Issue 7381
  • DOI: 10.1038/nature10669

Evidence for substructure in lens galaxies?
journal, April 1998


USING GAPS IN N -BODY TIDAL STREAMS TO PROBE MISSING SATELLITES
journal, June 2014


Planck 2015 results : XIII. Cosmological parameters
journal, September 2016


Drizzle: A Method for the Linear Reconstruction of Undersampled Images
journal, February 2002

  • Fruchter, A. S.; Hook, R. N.
  • Publications of the Astronomical Society of the Pacific, Vol. 114, Issue 792
  • DOI: 10.1086/338393

Quantifying the power spectrum of small-scale structure in semi-analytic galaxies
journal, August 2019

  • Brennan, Sean; Benson, Andrew J.; Cyr-Racine, Francis-Yan
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 4
  • DOI: 10.1093/mnras/stz1607

Dark Matter Substructure Detection Using Spatially Resolved Spectroscopy of Lensed Dusty Galaxies
journal, March 2013


Statistics of mass substructure from strong gravitational lensing: quantifying the mass fraction and mass function
journal, December 2009


Modeling gd-1 gaps in a Milky way Potential
journal, March 2016


Tensions between the early and late Universe
journal, September 2019


Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing
journal, November 2017

  • Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.
  • The Astrophysical Journal, Vol. 850, Issue 1
  • DOI: 10.3847/2041-8213/aa9704

Deep convolutional neural networks as strong gravitational lens detectors
journal, March 2018


Too big to fail? The puzzling darkness of massive Milky Way subhaloes: Massive dark subhaloes in the Milky Way
journal, June 2011

  • Boylan-Kolchin, Michael; Bullock, James S.; Kaplinghat, Manoj
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 415, Issue 1
  • DOI: 10.1111/j.1745-3933.2011.01074.x

Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses
journal, June 2014

  • Vegetti, S.; Koopmans, L. V. E.; Auger, M. W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 3
  • DOI: 10.1093/mnras/stu943

Dark census: Statistically detecting the satellite populations of distant galaxies
journal, August 2016

  • Cyr-Racine, Francis-Yan; Moustakas, Leonidas A.; Keeton, Charles R.
  • Physical Review D, Vol. 94, Issue 4
  • DOI: 10.1103/PhysRevD.94.043505

Dark Matter Subhalos and the Dwarf Satellites of the Milky Way
journal, June 2008

  • Madau, Piero; Diemand, Jürg; Kuhlen, Michael
  • The Astrophysical Journal, Vol. 679, Issue 2
  • DOI: 10.1086/587545

A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses
journal, August 2017

  • Minor, Quinn E.; Kaplinghat, Manoj; Li, Nan
  • The Astrophysical Journal, Vol. 845, Issue 2
  • DOI: 10.3847/1538-4357/aa7fee

Beyond subhalos: Probing the collective effect of the Universe’s small-scale structure with gravitational lensing
journal, July 2019

  • Cyr-Racine, Francis-Yan; Keeton, Charles R.; Moustakas, Leonidas A.
  • Physical Review D, Vol. 100, Issue 2
  • DOI: 10.1103/PhysRevD.100.023013

Gravitational imaging of cold dark matter substructures: Gravitational imaging of CDM substructures
journal, October 2005


Trans-dimensional Bayesian inference for gravitational lens substructures
journal, November 2015

  • Brewer, Brendon J.; Huijser, David; Lewis, Geraint F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 455, Issue 2
  • DOI: 10.1093/mnras/stv2370

Probing the Small-scale Structure in Strongly Lensed Systems via Transdimensional Inference
journal, February 2018

  • Daylan, Tansu; Cyr-Racine, Francis-Yan; Rivero, Ana Diaz
  • The Astrophysical Journal, Vol. 854, Issue 2
  • DOI: 10.3847/1538-4357/aaaa1e

Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z ∼ 0.2
journal, September 2018

  • Vegetti, S.; Despali, G.; Lovell, M. R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 3
  • DOI: 10.1093/mnras/sty2393

Lensing substructure quantification in RXJ1131-1231: a 2 keV lower bound on dark matter thermal relic mass
journal, May 2017

  • Birrer, Simon; Amara, Adam; Refregier, Alexandre
  • Journal of Cosmology and Astroparticle Physics, Vol. 2017, Issue 05
  • DOI: 10.1088/1475-7516/2017/05/037

Clumps and streams in the local dark matter distribution
journal, August 2008


Fast automated analysis of strong gravitational lenses with convolutional neural networks
journal, August 2017

  • Hezaveh, Yashar D.; Levasseur, Laurence Perreault; Marshall, Philip J.
  • Nature, Vol. 548, Issue 7669
  • DOI: 10.1038/nature23463

Modelling the line-of-sight contribution in substructure lensing
journal, January 2018

  • Despali, Giulia; Vegetti, Simona; White, Simon D. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 4
  • DOI: 10.1093/mnras/sty159

Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure
journal, October 2007

  • Diemand, Jurg; Kuhlen, Michael; Madau, Piero
  • The Astrophysical Journal, Vol. 667, Issue 2
  • DOI: 10.1086/520573

The number and size of subhalo-induced gaps in stellar streams
journal, August 2016

  • Erkal, Denis; Belokurov, Vasily; Bovy, Jo
  • Monthly Notices of the Royal Astronomical Society, Vol. 463, Issue 1
  • DOI: 10.1093/mnras/stw1957

Dark Matter Substructure and Gamma‐Ray Annihilation in the Milky Way Halo
journal, March 2007

  • Diemand, Jurg; Kuhlen, Michael; Madau, Piero
  • The Astrophysical Journal, Vol. 657, Issue 1
  • DOI: 10.1086/510736

Detection of a dark substructure through gravitational imaging: Detection of a dark substructure
journal, October 2010


The Aquarius Project: the subhaloes of galactic haloes
journal, December 2008


Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in Galaxies
journal, January 2009


Detecting dark matter substructures around the Milky Way with Gaia
journal, November 2014

  • Feldmann, Robert; Spolyar, Douglas
  • Monthly Notices of the Royal Astronomical Society, Vol. 446, Issue 1
  • DOI: 10.1093/mnras/stu2147

Detecting dark matter substructure spectroscopically in strong gravitational lenses
journal, March 2003


The Population of Galaxy–Galaxy Strong Lenses in Forthcoming Optical Imaging Surveys
journal, September 2015