skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors

Abstract

The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m−3) and high ionic conductivity (1.2 × 10−4 S cm−1 at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm−2 that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications.

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo; ; ; ; ; ; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
SLAC
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1595360
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Country of Publication:
United States
Language:
English

Citation Formats

Mackanic, David G., Yan, Xuzhou, Zhang, Qiuhong, Matsuhisa, Naoji, Yu, Zhiao, Jiang, Yuanwen, Manika, Tuheen, Lopez, Jeffrey, Yan, Hongping, Liu, Kai, Chen, Xiaodong, Cui, Yi, and Bao, Zhenan. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. United States: N. p., 2019. Web. doi:10.1038/s41467-019-13362-4.
Mackanic, David G., Yan, Xuzhou, Zhang, Qiuhong, Matsuhisa, Naoji, Yu, Zhiao, Jiang, Yuanwen, Manika, Tuheen, Lopez, Jeffrey, Yan, Hongping, Liu, Kai, Chen, Xiaodong, Cui, Yi, & Bao, Zhenan. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. United States. doi:10.1038/s41467-019-13362-4.
Mackanic, David G., Yan, Xuzhou, Zhang, Qiuhong, Matsuhisa, Naoji, Yu, Zhiao, Jiang, Yuanwen, Manika, Tuheen, Lopez, Jeffrey, Yan, Hongping, Liu, Kai, Chen, Xiaodong, Cui, Yi, and Bao, Zhenan. Tue . "Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors". United States. doi:10.1038/s41467-019-13362-4. https://www.osti.gov/servlets/purl/1595360.
@article{osti_1595360,
title = {Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors},
author = {Mackanic, David G. and Yan, Xuzhou and Zhang, Qiuhong and Matsuhisa, Naoji and Yu, Zhiao and Jiang, Yuanwen and Manika, Tuheen and Lopez, Jeffrey and Yan, Hongping and Liu, Kai and Chen, Xiaodong and Cui, Yi and Bao, Zhenan},
abstractNote = {The emergence of wearable electronics puts batteries closer to the human skin, exacerbating the need for battery materials that are robust, highly ionically conductive, and stretchable. Herein, we introduce a supramolecular design as an effective strategy to overcome the canonical tradeoff between mechanical robustness and ionic conductivity in polymer electrolytes. The supramolecular lithium ion conductor utilizes orthogonally functional H-bonding domains and ion-conducting domains to create a polymer electrolyte with unprecedented toughness (29.3 MJ m−3) and high ionic conductivity (1.2 × 10−4 S cm−1 at 25 °C). Implementation of the supramolecular ion conductor as a binder material allows for the creation of stretchable lithium-ion battery electrodes with strain capability of over 900% via a conventional slurry process. The supramolecular nature of these battery components enables intimate bonding at the electrode-electrolyte interface. Combination of these stretchable components leads to a stretchable battery with a capacity of 1.1 mAh cm−2 that functions even when stretched to 70% strain. The method reported here of decoupling ionic conductivity from mechanical properties opens a promising route to create high-toughness ion transport materials for energy storage applications.},
doi = {10.1038/s41467-019-13362-4},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Towards greener and more sustainable batteries for electrical energy storage
journal, November 2014


Bring on the bodyNET
journal, September 2017

  • Chu, Bryant; Burnett, William; Chung, Jong Won
  • Nature, Vol. 549, Issue 7672
  • DOI: 10.1038/549328a

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


A solid future for battery development
journal, September 2016


Epidermal Electronics
journal, August 2011


A stretchable and biodegradable strain and pressure sensor for orthopaedic application
journal, May 2018

  • Boutry, Clementine M.; Kaizawa, Yukitoshi; Schroeder, Bob C.
  • Nature Electronics, Vol. 1, Issue 5
  • DOI: 10.1038/s41928-018-0071-7

Syringe-injectable electronics
journal, June 2015

  • Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang
  • Nature Nanotechnology, Vol. 10, Issue 7
  • DOI: 10.1038/nnano.2015.115

Polymer Electrolytes
journal, July 2013


The Compensation Effect in the Vogel–Tammann–Fulcher (VTF) Equation for Polymer-Based Electrolytes
journal, May 2017


Structure–Conductivity Relationship for Peptoid-Based PEO–Mimetic Polymer Electrolytes
journal, June 2012

  • Sun, Jing; Stone, Gregory M.; Balsara, Nitash P.
  • Macromolecules, Vol. 45, Issue 12
  • DOI: 10.1021/ma300775b

The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids
journal, July 1955

  • Williams, Malcolm L.; Landel, Robert F.; Ferry, John D.
  • Journal of the American Chemical Society, Vol. 77, Issue 14
  • DOI: 10.1021/ja01619a008

Polymer electrolytes—Some principles, cautions, and new practices
journal, October 2017


Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes
journal, June 2007

  • Singh, Mohit; Odusanya, Omolola; Wilmes, Gregg M.
  • Macromolecules, Vol. 40, Issue 13
  • DOI: 10.1021/ma0629541

High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation
journal, December 2013

  • Schulze, Morgan W.; McIntosh, Lucas D.; Hillmyer, Marc A.
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl4034818

A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

Highly Conductive and Thermally Stable Ion Gels with Tunable Anisotropy and Modulus
journal, January 2016


Decoupling Bulk Mechanics and Mono- and Multivalent Ion Transport in Polymers Based on Metal–Ligand Coordination
journal, July 2018


Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems
journal, February 2013

  • Xu, Sheng; Zhang, Yihui; Cho, Jiung
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2553

A Gum-Like Lithium-Ion Battery Based on a Novel Arched Structure
journal, January 2015


Supramolecular Polymer Materials: Chain Extension of Telechelic Polymers Using a Reactive Hydrogen-Bonding Synthon
journal, June 2000


Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives
journal, November 2016


Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts
journal, September 1983


Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes
journal, March 2018

  • Yan, Xuzhou; Liu, Zhiyuan; Zhang, Qiuhong
  • Journal of the American Chemical Society, Vol. 140, Issue 15
  • DOI: 10.1021/jacs.8b01682

Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding
journal, November 1997


A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries
journal, January 2018

  • Zhou, Binghua; He, Dan; Hu, Ji
  • Journal of Materials Chemistry A, Vol. 6, Issue 25
  • DOI: 10.1039/C8TA01907J

Self‐Healing Polymer Electrolytes Formed via Dual‐Networks: A New Strategy for Flexible Lithium Metal Batteries
journal, November 2018

  • Zhou, Binghua; Zuo, Cai; Xiao, Zhuliu
  • Chemistry – A European Journal, Vol. 24, Issue 72
  • DOI: 10.1002/chem.201803943

Double-slit photoelectron interference in strong-field ionization of the neon dimer
journal, January 2019


Dynamic supramolecular poly(isobutylene)s for self-healing materials
journal, January 2012

  • Herbst, Florian; Seiffert, Sebastian; Binder, Wolfgang H.
  • Polymer Chemistry, Vol. 3, Issue 11
  • DOI: 10.1039/c2py20265d

Flexible Organic–Inorganic Hybrid Solid Electrolytes Formed via Thiol–Acrylate Photopolymerization
journal, February 2017


Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries
journal, August 2015


Highly conductive solvent-free polymer electrolyte membrane for lithium-ion batteries: Effect of prepolymer molecular weight
journal, January 2016


Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes
journal, June 2016


Correlation between Solvation Structure and Ion-Conductive Behavior of Concentrated Poly(ethylene carbonate)-Based Electrolytes
journal, June 2016

  • Kimura, Kento; Motomatsu, Joh; Tominaga, Yoichi
  • The Journal of Physical Chemistry C, Vol. 120, Issue 23
  • DOI: 10.1021/acs.jpcc.6b03277

Supramolecular Regulation of Anions Enhances Conductivity and Transference Number of Lithium in Liquid Electrolytes
journal, July 2018

  • Qiao, Bo; Leverick, Graham M.; Zhao, Wei
  • Journal of the American Chemical Society, Vol. 140, Issue 35
  • DOI: 10.1021/jacs.8b05915

Effect of Anions on Lithium Ion Conduction in Poly(ethylene carbonate)-based Polymer Electrolytes
journal, January 2015

  • Tominaga, Yoichi; Yamazaki, Kenta; Nanthana, Vannasa
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0211502jes

A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self-Healing Elastic Polymer
journal, January 2016

  • Sun, Yongming; Lopez, Jeffrey; Lee, Hyun-Wook
  • Advanced Materials, Vol. 28, Issue 12
  • DOI: 10.1002/adma.201504723

3D Porous Sponge-Inspired Electrode for Stretchable Lithium-Ion Batteries
journal, March 2016


All-Printed, Stretchable Zn-Ag 2 O Rechargeable Battery via Hyperelastic Binder for Self-Powering Wearable Electronics
journal, December 2016


Stretchable gold conductors on elastomeric substrates
journal, April 2003

  • Lacour, Stephanie Perichon; Wagner, Sigurd; Huang, Zhenyu
  • Applied Physics Letters, Vol. 82, Issue 15, p. 2404-2406
  • DOI: 10.1063/1.1565683

Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes
journal, November 2015

  • Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0321602jes

Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance
journal, June 2014

  • Ren, Jing; Zhang, Ye; Bai, Wenyu
  • Angewandte Chemie International Edition, Vol. 53, Issue 30
  • DOI: 10.1002/anie.201402388

An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance
journal, May 2016

  • Xu, Yifan; Zhao, Yang; Ren, Jing
  • Angewandte Chemie International Edition, Vol. 55, Issue 28
  • DOI: 10.1002/anie.201601804

Flexible and stretchable power sources for wearable electronics
journal, June 2017

  • Zamarayeva, Alla M.; Ostfeld, Aminy E.; Wang, Michael
  • Science Advances, Vol. 3, Issue 6
  • DOI: 10.1126/sciadv.1602051

Polymer electrolytes for lithium polymer batteries
journal, January 2016

  • Long, Lizhen; Wang, Shuanjin; Xiao, Min
  • Journal of Materials Chemistry A, Vol. 4, Issue 26
  • DOI: 10.1039/C6TA02621D

Tough adhesives for diverse wet surfaces
journal, July 2017