skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-equilibrium signal integration in hydrogels

Abstract

Materials that perform complex chemical signal processing are ubiquitous in living systems. Their synthetic analogs would transform developments in biomedicine, catalysis, and many other areas. By drawing inspiration from biological signaling dynamics, we show how simple hydrogels have a previously untapped capacity for non-equilibrium chemical signal processing and integration. Using a common polyacrylic acid hydrogel, with divalent cations and acid as representative stimuli, we demonstrate the emergence of non-monotonic osmosis-driven spikes and waves of expansion/contraction, as well as traveling color waves. These distinct responses emerge from different combinations of rates and sequences of stimuli. A non-equilibrium continuum theory we develop quantitatively captures the non-monotonic osmosis-driven deformation waves and determines the onset of their emergence in terms of the input parameters. These results suggest simple hydrogels, already built into numerous systems, have a much larger sensing space than currently employed.

Authors:
 [1]; ORCiD logo [2];  [3];  [3];  [4]
  1. Harvard Univ., Cambridge, MA (United States); Radboud Univ., Nijmegen (Netherlands). Inst. for Molecules and Materials
  2. Harvard Univ., Cambridge, MA (United States). Kavli Inst. for Bionano Science and Technology; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  3. Harvard Univ., Cambridge, MA (United States)
  4. Harvard Univ., Cambridge, MA (United States). Kavli Inst. for Bionano Science and Technology and Wyss Inst. for Biologically Inspired Engineering
Publication Date:
Research Org.:
Harvard Univ., Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1595224
Grant/Contract Number:  
SC0005247
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 11; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Korevaar, Peter A., Kaplan, C. Nadir, Grinthal, Alison, Rust, Reanne M., and Aizenberg, Joanna. Non-equilibrium signal integration in hydrogels. United States: N. p., 2020. Web. doi:10.1038/s41467-019-14114-0.
Korevaar, Peter A., Kaplan, C. Nadir, Grinthal, Alison, Rust, Reanne M., & Aizenberg, Joanna. Non-equilibrium signal integration in hydrogels. United States. doi:10.1038/s41467-019-14114-0.
Korevaar, Peter A., Kaplan, C. Nadir, Grinthal, Alison, Rust, Reanne M., and Aizenberg, Joanna. Mon . "Non-equilibrium signal integration in hydrogels". United States. doi:10.1038/s41467-019-14114-0. https://www.osti.gov/servlets/purl/1595224.
@article{osti_1595224,
title = {Non-equilibrium signal integration in hydrogels},
author = {Korevaar, Peter A. and Kaplan, C. Nadir and Grinthal, Alison and Rust, Reanne M. and Aizenberg, Joanna},
abstractNote = {Materials that perform complex chemical signal processing are ubiquitous in living systems. Their synthetic analogs would transform developments in biomedicine, catalysis, and many other areas. By drawing inspiration from biological signaling dynamics, we show how simple hydrogels have a previously untapped capacity for non-equilibrium chemical signal processing and integration. Using a common polyacrylic acid hydrogel, with divalent cations and acid as representative stimuli, we demonstrate the emergence of non-monotonic osmosis-driven spikes and waves of expansion/contraction, as well as traveling color waves. These distinct responses emerge from different combinations of rates and sequences of stimuli. A non-equilibrium continuum theory we develop quantitatively captures the non-monotonic osmosis-driven deformation waves and determines the onset of their emergence in terms of the input parameters. These results suggest simple hydrogels, already built into numerous systems, have a much larger sensing space than currently employed.},
doi = {10.1038/s41467-019-14114-0},
journal = {Nature Communications},
number = 1,
volume = 11,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Autonomous Chemomechanical Oscillations in a Hydrogel/Enzyme System Driven by Glucose
journal, September 2002

  • Dhanarajan, Anish P.; Misra, Gauri P.; Siegel, Ronald A.
  • The Journal of Physical Chemistry A, Vol. 106, Issue 38
  • DOI: 10.1021/jp026086v

Active scaffolds for on-demand drug and cell delivery
journal, December 2010

  • Zhao, Xuanhe; Kim, Jaeyun; Cezar, Christine A.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 1
  • DOI: 10.1073/pnas.1007862108

Metabolic crosstalk between membrane and storage lipids facilitates heat stress management in Schizosaccharomyces pombe
journal, March 2017


Biomimetic 4D printing
journal, January 2016

  • Sydney Gladman, A.; Matsumoto, Elisabetta A.; Nuzzo, Ralph G.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4544

Antagonistic Enzymes in a Biocatalytic pH Feedback System Program Autonomous DNA Hydrogel Life Cycles
journal, July 2017


Bioresponsive hydrogels
journal, April 2007


Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators
journal, June 2018

  • Chin, Stacey M.; Synatschke, Christopher V.; Liu, Shuangping
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-04800-w

Harnessing structural instability and material instability in the hydrogel-actuated integrated responsive structures (HAIRS)
journal, May 2017


Electro-actuated hydrogel walkers with dual responsive legs
journal, January 2014

  • Morales, Daniel; Palleau, Etienne; Dickey, Michael D.
  • Soft Matter, Vol. 10, Issue 9
  • DOI: 10.1039/C3SM51921J

Linear and Fast Hydrogel Glucose Sensor Materials Enabled by Volume Resetting Agents
journal, July 2014

  • Zhang, Chunjie; Cano, Gerry G.; Braun, Paul V.
  • Advanced Materials, Vol. 26, Issue 32
  • DOI: 10.1002/adma.201401710

Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water
journal, February 2017

  • Yuk, Hyunwoo; Lin, Shaoting; Ma, Chu
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14230

Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients
journal, January 2013


Synthetic homeostatic materials with chemo-mechano-chemical self-regulation
journal, July 2012

  • He, Ximin; Aizenberg, Michael; Kuksenok, Olga
  • Nature, Vol. 487, Issue 7406, p. 214-218
  • DOI: 10.1038/nature11223

Controlled Origami Folding of Hydrogel Bilayers with Sustained Reversibility for Robust Microcarriers
journal, November 2011

  • Shim, Tae Soup; Kim, Shin-Hyun; Heo, Chul-Joon
  • Angewandte Chemie International Edition, Vol. 51, Issue 6
  • DOI: 10.1002/anie.201106723

An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system
journal, March 2015

  • Shastri, Ankita; McGregor, Lynn M.; Liu, Ya
  • Nature Chemistry, Vol. 7, Issue 5
  • DOI: 10.1038/nchem.2203

Computational modeling of oscillating fins that “catch and release” targeted nanoparticles in bilayer flows
journal, January 2016

  • Liu, Ya; Bhattacharya, Amitabh; Kuksenok, Olga
  • Soft Matter, Vol. 12, Issue 5
  • DOI: 10.1039/C5SM02752G

Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting
journal, August 2013

  • Palleau, Etienne; Morales, Daniel; Dickey, Michael D.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3257

DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling
journal, September 2017


Motility Powered by Supramolecular Springs and Ratchets
journal, April 2000


Cellular memory in eukaryotic chemotaxis
journal, September 2014

  • Skoge, Monica; Yue, Haicen; Erickstad, Michael
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 40
  • DOI: 10.1073/pnas.1412197111

Controlled switching of the wetting behavior of biomimetic surfaces with hydrogel-supported nanostructures
journal, January 2008

  • Sidorenko, Alexander; Krupenkin, Tom; Aizenberg, Joanna
  • Journal of Materials Chemistry, Vol. 18, Issue 32
  • DOI: 10.1039/b805433a

Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing
journal, April 2018


The nanotechnology of life-inspired systems
journal, July 2016

  • Grzybowski, Bartosz A.; Huck, Wilhelm T. S.
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.116

Systems chemistry
journal, January 2017

  • Ashkenasy, Gonen; Hermans, Thomas M.; Otto, Sijbren
  • Chemical Society Reviews, Vol. 46, Issue 9
  • DOI: 10.1039/C7CS00117G

Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns
journal, January 2007


Bioinspired Anisotropic Hydrogel Actuators with On-Off Switchable and Color-Tunable Fluorescence Behaviors
journal, December 2017

  • Ma, Chunxin; Lu, Wei; Yang, Xuxu
  • Advanced Functional Materials, Vol. 28, Issue 7
  • DOI: 10.1002/adfm.201704568

Reaction–diffusion processes at the nano- and microscales
journal, April 2016


An electric-eel-inspired soft power source from stacked hydrogels
journal, December 2017

  • Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron
  • Nature, Vol. 552, Issue 7684
  • DOI: 10.1038/nature24670

Dynamic Plastid Redox Signals Integrate Gene Expression and Metabolism to Induce Distinct Metabolic States in Photosynthetic Acclimation in Arabidopsis
journal, September 2009

  • Bräutigam, Katharina; Dietzel, Lars; Kleine, Tatjana
  • The Plant Cell, Vol. 21, Issue 9
  • DOI: 10.1105/tpc.108.062018

Reconfigurable assemblies of active, autochemotactic gels
journal, December 2012

  • Dayal, P.; Kuksenok, O.; Balazs, A. C.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 2
  • DOI: 10.1073/pnas.1213432110

Hydrogel-based actuators: possibilities and limitations
journal, December 2014


Chemo-Mechanically Regulated Oscillation of an Enzymatic Reaction
journal, February 2013

  • He, Ximin; Friedlander, Ronn S.; Zarzar, Lauren D.
  • Chemistry of Materials, Vol. 25, Issue 4
  • DOI: 10.1021/cm303313a

Emerging applications of stimuli-responsive polymer materials
journal, January 2010

  • Stuart, Martien A. Cohen; Huck, Wilhelm T. S.; Genzer, Jan
  • Nature Materials, Vol. 9, Issue 2, p. 101-113
  • DOI: 10.1038/nmat2614

Recent developments in self-oscillating polymeric systems as smart materials: from polymers to bulk hydrogels
journal, January 2017

  • Kim, Youn Soo; Tamate, Ryota; Akimoto, Aya Mizutani
  • Materials Horizons, Vol. 4, Issue 1
  • DOI: 10.1039/C6MH00435K

Dictyostelium
journal, December 2010


Designing Responsive Buckled Surfaces by Halftone Gel Lithography
journal, March 2012


Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes
journal, March 2015

  • Zabow, G.; Dodd, S. J.; Koretsky, A. P.
  • Nature, Vol. 520, Issue 7545
  • DOI: 10.1038/nature14294

pH Wave-Front Propagation in the Urea-Urease Reaction
journal, August 2012

  • Wrobel, Magdalena M.; Bánsági, Tamás; Scott, Stephen K.
  • Biophysical Journal, Vol. 103, Issue 3
  • DOI: 10.1016/j.bpj.2012.06.020

Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel
journal, August 2015

  • Kim, Youn Soo; Liu, Mingjie; Ishida, Yasuhiro
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4363

Molecular Physiology of Cardiac Repolarization
journal, October 2005


Adaptive liquid microlenses activated by stimuli-responsive hydrogels
journal, August 2006

  • Dong, Liang; Agarwal, Abhishek K.; Beebe, David J.
  • Nature, Vol. 442, Issue 7102
  • DOI: 10.1038/nature05024