DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Single‐Ion Conducting Borate Network Polymer as a Viable Quasi‐Solid Electrolyte for Lithium Metal Batteries

Abstract

Abstract Lithium‐ion batteries have remained a state‐of‐the‐art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high‐voltage cathodes represent promising candidates for next‐generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high‐performing single‐ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room‐temperature conductivity of 1.5 × 10 −4 S cm −1 , and exceptional selectivity for Li‐ion conduction ( t Li+ = 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi‐solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [4];  [4];  [5];  [4];  [6];  [2]; ORCiD logo [7]
  1. Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA, Department of Mechanical Engineering The University of Hong Kong Pokfulam Road 999077 Hong Kong China
  2. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
  3. Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA, Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
  4. Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
  5. Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley CA 94720 USA
  6. Department of Materials Science and Engineering University of California Berkeley Berkeley CA 94720 USA
  7. Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA, Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA, Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley CA 94720 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1595168
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 32 Journal Issue: 10; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Shin, Dong‐Myeong, Bachman, Jonathan E., Taylor, Mercedes K., Kamcev, Jovan, Park, Jesse G., Ziebel, Michael E., Velasquez, Ever, Jarenwattananon, Nanette N., Sethi, Gurmukh K., Cui, Yi, and Long, Jeffrey R. A Single‐Ion Conducting Borate Network Polymer as a Viable Quasi‐Solid Electrolyte for Lithium Metal Batteries. Germany: N. p., 2020. Web. doi:10.1002/adma.201905771.
Shin, Dong‐Myeong, Bachman, Jonathan E., Taylor, Mercedes K., Kamcev, Jovan, Park, Jesse G., Ziebel, Michael E., Velasquez, Ever, Jarenwattananon, Nanette N., Sethi, Gurmukh K., Cui, Yi, & Long, Jeffrey R. A Single‐Ion Conducting Borate Network Polymer as a Viable Quasi‐Solid Electrolyte for Lithium Metal Batteries. Germany. https://doi.org/10.1002/adma.201905771
Shin, Dong‐Myeong, Bachman, Jonathan E., Taylor, Mercedes K., Kamcev, Jovan, Park, Jesse G., Ziebel, Michael E., Velasquez, Ever, Jarenwattananon, Nanette N., Sethi, Gurmukh K., Cui, Yi, and Long, Jeffrey R. Mon . "A Single‐Ion Conducting Borate Network Polymer as a Viable Quasi‐Solid Electrolyte for Lithium Metal Batteries". Germany. https://doi.org/10.1002/adma.201905771.
@article{osti_1595168,
title = {A Single‐Ion Conducting Borate Network Polymer as a Viable Quasi‐Solid Electrolyte for Lithium Metal Batteries},
author = {Shin, Dong‐Myeong and Bachman, Jonathan E. and Taylor, Mercedes K. and Kamcev, Jovan and Park, Jesse G. and Ziebel, Michael E. and Velasquez, Ever and Jarenwattananon, Nanette N. and Sethi, Gurmukh K. and Cui, Yi and Long, Jeffrey R.},
abstractNote = {Abstract Lithium‐ion batteries have remained a state‐of‐the‐art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high‐voltage cathodes represent promising candidates for next‐generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high‐performing single‐ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room‐temperature conductivity of 1.5 × 10 −4 S cm −1 , and exceptional selectivity for Li‐ion conduction ( t Li+ = 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi‐solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte.},
doi = {10.1002/adma.201905771},
journal = {Advanced Materials},
number = 10,
volume = 32,
place = {Germany},
year = {Mon Jan 27 00:00:00 EST 2020},
month = {Mon Jan 27 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.201905771

Citation Metrics:
Cited by: 77 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Influence of cross-link density on the properties of ROMP thermosets
journal, February 2009


How does tack depend on time of contact and contact pressure?
journal, February 1996


Solid–Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages
journal, May 2018

  • Petronico, Aaron; Moneypenny, Timothy P.; Nicolau, Bruno G.
  • Journal of the American Chemical Society, Vol. 140, Issue 24
  • DOI: 10.1021/jacs.8b00886

Differences between polymer/salt and single ion conductor solid polymer electrolytes
journal, January 2013

  • Lin, Kan-Ju; Li, Katherine; Maranas, Janna K.
  • RSC Adv., Vol. 3, Issue 5
  • DOI: 10.1039/C2RA21644B

Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature
journal, September 2016


Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion
journal, January 2016

  • Ma, Qiang; Zhang, Heng; Zhou, Chongwang
  • Angewandte Chemie International Edition, Vol. 55, Issue 7
  • DOI: 10.1002/anie.201509299

Poly(ethylene oxide)-based electrolytes for lithium-ion batteries
journal, January 2015

  • Xue, Zhigang; He, Dan; Xie, Xiaolin
  • Journal of Materials Chemistry A, Vol. 3, Issue 38
  • DOI: 10.1039/C5TA03471J

Inhibition of Lithium Dendrites by Fumed Silica-Based Composite Electrolytes
journal, January 2004

  • Zhang, Xiang-Wu; Li, Yangxing; Khan, Saad A.
  • Journal of The Electrochemical Society, Vol. 151, Issue 8
  • DOI: 10.1149/1.1767158

Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix
journal, April 2017

  • Lin, Dingchang; Zhao, Jie; Sun, Jie
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 18
  • DOI: 10.1073/pnas.1619489114

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

High-Performance Quasi-Solid-State MXene-Based Li–I Batteries
journal, January 2019


Functionalized Porous Aromatic Frameworks as High‐Performance Adsorbents for the Rapid Removal of Boric Acid from Water
journal, February 2019

  • Kamcev, Jovan; Taylor, Mercedes K.; Shin, Dong‐Myeong
  • Advanced Materials, Vol. 31, Issue 18
  • DOI: 10.1002/adma.201808027

Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF)
journal, January 2012

  • Ben, Teng; Li, Yanqiang; Zhu, Liangkui
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21935b

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

An AB alternating diblock single ion conducting polymer electrolyte membrane for all-solid-state lithium metal secondary batteries
journal, November 2018


Conductivity and transference number measurements on polymer electrolytes
journal, September 1988


Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
journal, June 2016

  • Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1600422113

Polymer electrolytes for lithium polymer batteries
journal, January 2016

  • Long, Lizhen; Wang, Shuanjin; Xiao, Min
  • Journal of Materials Chemistry A, Vol. 4, Issue 26
  • DOI: 10.1039/C6TA02621D

Ammonia Capture in Porous Organic Polymers Densely Functionalized with Brønsted Acid Groups
journal, January 2014

  • Van Humbeck, Jeffrey F.; McDonald, Thomas M.; Jing, Xiaofei
  • Journal of the American Chemical Society, Vol. 136, Issue 6, p. 2432-2440
  • DOI: 10.1021/ja4105478

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Influence of molecular weight between crosslinks on the mechanical properties of polymers formed via ring-opening metathesis
journal, January 2018

  • Long, Tyler R.; Elder, Robert M.; Bain, Erich D.
  • Soft Matter, Vol. 14, Issue 17
  • DOI: 10.1039/C7SM02407J

Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
journal, January 2017

  • Zhang, Heng; Li, Chunmei; Piszcz, Michal
  • Chemical Society Reviews, Vol. 46, Issue 3
  • DOI: 10.1039/C6CS00491A

Organic Sol-Gel Synthesis: Solution-Processable Microporous Organic Networks
journal, August 2010

  • Moon, Su-Young; Bae, Jae-Sung; Jeon, Eunkyung
  • Angewandte Chemie International Edition, Vol. 49, Issue 49
  • DOI: 10.1002/anie.201002609

Tetraarylborate polymer networks as single-ion conducting solid electrolytes
journal, January 2015

  • Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin
  • Chemical Science, Vol. 6, Issue 10
  • DOI: 10.1039/C5SC02052B

Superior polymer backbone with poly(arylene ether) over polyamide for single ion conducting polymer electrolytes
journal, March 2017


An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes
journal, October 2017

  • Zhao, Chen-Zi; Zhang, Xue-Qiang; Cheng, Xin-Bing
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 42
  • DOI: 10.1073/pnas.1708489114

Advanced, lithium batteries based on high-performance composite polymer electrolytes
journal, November 2006


Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations
journal, January 2017

  • Barin, Gokhan; Peterson, Gregory W.; Crocellà, Valentina
  • Chemical Science, Vol. 8, Issue 6
  • DOI: 10.1039/C6SC05079D

Gel Polymer Electrolytes for Electrochemical Energy Storage
journal, November 2017

  • Cheng, Xunliang; Pan, Jian; Zhao, Yang
  • Advanced Energy Materials, Vol. 8, Issue 7
  • DOI: 10.1002/aenm.201702184

Deformation and toughness of polymeric systems: 3. Influence of crosslink density
journal, December 1993


Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
journal, December 2015

  • Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 1
  • DOI: 10.1073/pnas.1520394112

Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries
journal, August 2017


Single-Ion Li + , Na + , and Mg 2+ Solid Electrolytes Supported by a Mesoporous Anionic Cu–Azolate Metal–Organic Framework
journal, September 2017

  • Park, Sarah S.; Tulchinsky, Yuri; Dincă, Mircea
  • Journal of the American Chemical Society, Vol. 139, Issue 38
  • DOI: 10.1021/jacs.7b06197

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable
journal, October 2011


Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes
journal, May 2017

  • Zhang, Rui; Chen, Xiao-Ru; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 56, Issue 27
  • DOI: 10.1002/anie.201702099

Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


A method based on impedance spectroscopy to determine transport properties of polymer electrolytes
journal, January 2014

  • Arof, A. K.; Amirudin, S.; Yusof, S. Z.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 5
  • DOI: 10.1039/C3CP53830C

Stable Conversion Chemistry-Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Near-Single Ion Conduction
journal, March 2019

  • Zhou, Dong; Tkacheva, Anastasia; Tang, Xiao
  • Angewandte Chemie International Edition, Vol. 58, Issue 18
  • DOI: 10.1002/anie.201901582

NMR Investigation of Molecular Motion in the Neat Solid and Plastic-Crystalline Phases of Cyclohexane 1
journal, August 1997

  • McGrath, Kenneth J.; Weiss, Richard G.
  • Langmuir, Vol. 13, Issue 16
  • DOI: 10.1021/la962002w

Sulfonate-Grafted Porous Polymer Networks for Preferential CO2 Adsorption at Low Pressure
journal, November 2011

  • Lu, Weigang; Yuan, Daqiang; Sculley, Julian
  • Journal of the American Chemical Society, Vol. 133, Issue 45, p. 18126-18129
  • DOI: 10.1021/ja2087773

Influence of Solvating Plasticizer on Ion Conduction of Polysiloxane Single-Ion Conductors
journal, April 2014

  • Choi, U. Hyeok; Liang, Siwei; O’Reilly, Michael V.
  • Macromolecules, Vol. 47, Issue 9
  • DOI: 10.1021/ma500146v

A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries
journal, January 2016

  • Li, Yang; Wong, Ka Wai; Dou, Qianqian
  • Journal of Materials Chemistry A, Vol. 4, Issue 47
  • DOI: 10.1039/C6TA09106G

Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate
journal, January 2002

  • Xu, Kang; Zhang, Shengshui; Allen, Jan L.
  • Journal of The Electrochemical Society, Vol. 149, Issue 8
  • DOI: 10.1149/1.1490356

A Stable Quasi-Solid-State Sodium-Sulfur Battery
journal, July 2018

  • Zhou, Dong; Chen, Yi; Li, Baohua
  • Angewandte Chemie International Edition, Vol. 57, Issue 32
  • DOI: 10.1002/anie.201805008

Polyamine-Tethered Porous Polymer Networks for Carbon Dioxide Capture from Flue Gas
journal, June 2012

  • Lu, Weigang; Sculley, Julian P.; Yuan, Daqiang
  • Angewandte Chemie International Edition, Vol. 51, Issue 30, p. 7480-7484
  • DOI: 10.1002/anie.201202176

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041