DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From the Ternary Phase Ca 14 Zn 1+δ Sb 11 (δ ≈ 0.4) to the Quaternary Solid Solutions Ca14–xRExZnSb11 (RE = La–Nd, Sm, Gd, x ≈ 0.9). A Tale of Electron Doping via Rare-Earth Metal Substitutions and the Concomitant Structural Transformations

Abstract

In this work, the ternary compound Ca14Zn1.37(1)Sb11 and its six rare-earth metal substituted derivatives Ca14–xRExZnSb11 (RE = La–Nd, Sm, Gd; x ≈ 0.90±0.06) have been synthesized and structurally characterized by single-crystal X-ray diffraction methods. All com-pounds formally crystallize in the tetragonal Ca14AlSb11 structure type (space group $$I$$41$/ acd$, No. 142, $$Z$$ = 8). The crystal structure of Ca14Zn1.37(1)Sb11 subtly differs from the structure of the remaining six, as well as from the structure of the archetype, due to the presence of a partially occupied interstitial Zn position. The extra zinc atom is needed in this structure to alleviate the unfavorable number of valence electrons in the imaginary Ca14ZnSb11. Electron doping, via substitution of RE3+ ions on Ca2+ sites is shown as an alternative route to achieve electron balance in these Zn-based analogs of the Ca14AlSb11 structure, which does not require the in-corporation of interstitial atoms. Electrical resistivity measurements done on single-crystalline samples are in agreement with the notion that Ca14–xRExZnSb11 behave as either bad metals or heavily-doped semi-conductors. Magnetization measurements show Curie-Weiss paramagnetic behavior related to the local-moment magnetism of the RE3+ ions.

Authors:
 [1]; ORCiD logo [1]
  1. Univ. of Delaware, Newark, DE (United States)
Publication Date:
Research Org.:
Univ. of Delaware, Newark, DE (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1595078
Grant/Contract Number:  
SC0008885
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 58; Journal Issue: 13; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; antimonides; crystal structure; electronic structure; thermoelectrics; Zintl phases

Citation Formats

Baranets, Sviatoslav, and Bobev, Svilen. From the Ternary Phase Ca 14 Zn 1+δ Sb 11 (δ ≈ 0.4) to the Quaternary Solid Solutions Ca14–xRExZnSb11 (RE = La–Nd, Sm, Gd, x ≈ 0.9). A Tale of Electron Doping via Rare-Earth Metal Substitutions and the Concomitant Structural Transformations. United States: N. p., 2019. Web. doi:10.1021/acs.inorgchem.9b00809.
Baranets, Sviatoslav, & Bobev, Svilen. From the Ternary Phase Ca 14 Zn 1+δ Sb 11 (δ ≈ 0.4) to the Quaternary Solid Solutions Ca14–xRExZnSb11 (RE = La–Nd, Sm, Gd, x ≈ 0.9). A Tale of Electron Doping via Rare-Earth Metal Substitutions and the Concomitant Structural Transformations. United States. https://doi.org/10.1021/acs.inorgchem.9b00809
Baranets, Sviatoslav, and Bobev, Svilen. Thu . "From the Ternary Phase Ca 14 Zn 1+δ Sb 11 (δ ≈ 0.4) to the Quaternary Solid Solutions Ca14–xRExZnSb11 (RE = La–Nd, Sm, Gd, x ≈ 0.9). A Tale of Electron Doping via Rare-Earth Metal Substitutions and the Concomitant Structural Transformations". United States. https://doi.org/10.1021/acs.inorgchem.9b00809. https://www.osti.gov/servlets/purl/1595078.
@article{osti_1595078,
title = {From the Ternary Phase Ca 14 Zn 1+δ Sb 11 (δ ≈ 0.4) to the Quaternary Solid Solutions Ca14–xRExZnSb11 (RE = La–Nd, Sm, Gd, x ≈ 0.9). A Tale of Electron Doping via Rare-Earth Metal Substitutions and the Concomitant Structural Transformations},
author = {Baranets, Sviatoslav and Bobev, Svilen},
abstractNote = {In this work, the ternary compound Ca14Zn1.37(1)Sb11 and its six rare-earth metal substituted derivatives Ca14–xRExZnSb11 (RE = La–Nd, Sm, Gd; x ≈ 0.90±0.06) have been synthesized and structurally characterized by single-crystal X-ray diffraction methods. All com-pounds formally crystallize in the tetragonal Ca14AlSb11 structure type (space group $I$41$/ acd$, No. 142, $Z$ = 8). The crystal structure of Ca14Zn1.37(1)Sb11 subtly differs from the structure of the remaining six, as well as from the structure of the archetype, due to the presence of a partially occupied interstitial Zn position. The extra zinc atom is needed in this structure to alleviate the unfavorable number of valence electrons in the imaginary Ca14ZnSb11. Electron doping, via substitution of RE3+ ions on Ca2+ sites is shown as an alternative route to achieve electron balance in these Zn-based analogs of the Ca14AlSb11 structure, which does not require the in-corporation of interstitial atoms. Electrical resistivity measurements done on single-crystalline samples are in agreement with the notion that Ca14–xRExZnSb11 behave as either bad metals or heavily-doped semi-conductors. Magnetization measurements show Curie-Weiss paramagnetic behavior related to the local-moment magnetism of the RE3+ ions.},
doi = {10.1021/acs.inorgchem.9b00809},
journal = {Inorganic Chemistry},
number = 13,
volume = 58,
place = {United States},
year = {Thu Jun 13 00:00:00 EDT 2019},
month = {Thu Jun 13 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The remarkable crystal chemistry of the Ca14AlSb11 structure type, magnetic and thermoelectric properties
journal, March 2019

  • Hu, Yufei; Cerretti, Giacomo; Kunz Wille, Elizabeth L.
  • Journal of Solid State Chemistry, Vol. 271
  • DOI: 10.1016/j.jssc.2018.12.037

Tuning Magnetism of [MnSb 4 ] 9– Cluster in Yb 14 MnSb 11 through Chemical Substitutions on Yb Sites: Appearance and Disappearance of Spin Reorientation
journal, September 2016

  • Hu, Yufei; Chen, Chih-Wei; Cao, Huibo
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b05636

Rationally Designing High-Performance Bulk Thermoelectric Materials
journal, August 2016


Zintl Chemistry for Designing High Efficiency Thermoelectric Materials
journal, February 2010

  • Toberer, Eric S.; May, Andrew F.; Snyder, G. Jeffrey
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901956r

Exploring the Limits of the Zintl Concept for the A14MPn11 Structure Type with M = Zn, Cd
journal, January 1995

  • Young, Dianna M.; Torardi, Charles C.; Olmstead, Marilyn M.
  • Chemistry of Materials, Vol. 7, Issue 1
  • DOI: 10.1021/cm00049a015

Zintl phases with group 15 elements and the transition metals: A brief overview of pnictides with diverse and complex structures
journal, February 2019


X-ray photoelectron spectroscopy studies of Yb14MnSb11 and Yb14ZnSb11
journal, January 2005

  • Holm, Aaron P.; Ozawa, Tadashi C.; Kauzlarich, Susan M.
  • Journal of Solid State Chemistry, Vol. 178, Issue 1
  • DOI: 10.1016/j.jssc.2004.07.009

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Crystal chemistry and magnetic properties of the solid solutions Ca 14−x RE x MnBi 11 (RE = La–Nd, Sm, and Gd–Ho; x ≈ 0.6–0.8)
journal, January 2017

  • Ovchinnikov, Alexander; Prakash, Jai; Bobev, Svilen
  • Dalton Transactions, Vol. 46, Issue 46
  • DOI: 10.1039/C7DT03715E

Traversing the Metal-Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb 14 Mn 1− x Al x Sb 11
journal, September 2008

  • Toberer, Eric S.; Cox, Catherine A.; Brown, Shawna R.
  • Advanced Functional Materials, Vol. 18, Issue 18
  • DOI: 10.1002/adfm.200800298

Effective Field Theories of Magnetism
journal, August 1966

  • Smart, J. Samuel; Van Vleck, J. H.
  • Physics Today, Vol. 19, Issue 8
  • DOI: 10.1063/1.3048415

High Performance Thermoelectric Materials: Progress and Their Applications
journal, November 2017

  • Yang, Lei; Chen, Zhi-Gang; Dargusch, Matthew S.
  • Advanced Energy Materials, Vol. 8, Issue 6
  • DOI: 10.1002/aenm.201701797

Zintl phases for thermoelectric devices
journal, January 2007

  • Kauzlarich, Susan M.; Brown, Shawna R.; Jeffrey Snyder, G.
  • Dalton Transactions, Issue 21
  • DOI: 10.1039/b702266b

Enhanced High-Temperature Thermoelectric Performance of Yb 14– x Ca x MnSb 11
journal, April 2012

  • Uvarov, Catherine A.; Ortega-Alvarez, Francisco; Kauzlarich, Susan M.
  • Inorganic Chemistry, Vol. 51, Issue 14
  • DOI: 10.1021/ic300567c

Zintl Phases: Transitions between Metallic and Ionic Bonding
journal, September 1973

  • Schäfer, Herbert; Eisenmann, Brigitte; Müller, Wiking
  • Angewandte Chemie International Edition in English, Vol. 12, Issue 9
  • DOI: 10.1002/anie.197306941

Seebeck and Figure of Merit Enhancement by Rare Earth Doping in Yb14-xRExZnSb11 (x = 0.5)
journal, March 2019

  • Kunz Wille, Elizabeth; Grewal, Navtej; Bux, Sabah
  • Materials, Vol. 12, Issue 5
  • DOI: 10.3390/ma12050731

Thermal air-oxidized coating on Yb14−xRExMnSb11 ceramics: The role of rare earth dopants
journal, August 2018

  • Vasilyeva, Inga; Abdusalyamova, Maxsuda; Makhmudov, Farchod
  • Journal of Thermal Analysis and Calorimetry, Vol. 136, Issue 2
  • DOI: 10.1007/s10973-018-7659-z

The effect of light rare earth element substitution in Yb 14 MnSb 11 on thermoelectric properties
journal, January 2015

  • Hu, Yufei; Bux, Sabah K.; Grebenkemper, Jason H.
  • Journal of Materials Chemistry C, Vol. 3, Issue 40
  • DOI: 10.1039/C5TC02326B

On the Extended Series of Quaternary Zintl Phases Ca13REMnSb11 (RE = La-Nd, Sm, Gd-Dy): On the Extended Series of Quaternary Zintl Phases Ca13REMnSb11 (RE = La-Nd, Sm, Gd-Dy)
journal, May 2016

  • Prakash, Jai; Stoyko, Stanislav; Voss, Leonard
  • European Journal of Inorganic Chemistry, Vol. 2016, Issue 18
  • DOI: 10.1002/ejic.201600306

Structural Variability versus Structural Flexibility. A Case Study of Eu 9 Cd 4+ x Sb 9 and Ca 9 Mn 4+ x Sb 9 ( x1 / 2 )
journal, November 2014

  • Liu, Xiao-Cun; Wu, Zhen; Xia, Sheng-Qing
  • Inorganic Chemistry, Vol. 54, Issue 3
  • DOI: 10.1021/ic5023505

Improved Thermoelectric Performance in Yb 14 Mn 1− x Zn x Sb 11 by the Reduction of Spin-Disorder Scattering
journal, May 2008

  • Brown, Shawna R.; Toberer, Eric S.; Ikeda, Teruyuki
  • Chemistry of Materials, Vol. 20, Issue 10
  • DOI: 10.1021/cm703616q

Effect of Crystal Fields on the Magnetic Properties of Samarium Intermetallic Compounds
journal, January 1973

  • de Wijn, H. W.; van Diepen, A. M.; Buschow, K. H. J.
  • Physical Review B, Vol. 7, Issue 1
  • DOI: 10.1103/PhysRevB.7.524

Probing the Limits of the Zintl Concept:  Structure and Bonding in Rare-Earth and Alkaline-Earth Zinc-Antimonides Yb 9 Zn 4+ x Sb 9 and Ca 9 Zn 4.5 Sb 9
journal, August 2004

  • Bobev, Svilen; Thompson, Joe D.; Sarrao, John L.
  • Inorganic Chemistry, Vol. 43, Issue 16
  • DOI: 10.1021/ic049836j

New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides
journal, February 2010


High thermoelectric efficiency in lanthanum doped Yb14MnSb11
journal, August 2008

  • Toberer, Eric S.; Brown, Shawna R.; Ikeda, Teruyuki
  • Applied Physics Letters, Vol. 93, Issue 6
  • DOI: 10.1063/1.2970089

Yb 14 MnSb 11 :  New High Efficiency Thermoelectric Material for Power Generation
journal, April 2006

  • Brown, Shawna R.; Kauzlarich, Susan M.; Gascoin, Franck
  • Chemistry of Materials, Vol. 18, Issue 7
  • DOI: 10.1021/cm060261t

Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials
journal, May 1996


Yb 14 MgSb 11 and Ca 14 MgSb 11 —New Mg-Containing Zintl Compounds and Their Structures, Bonding, and Thermoelectric Properties
journal, December 2014

  • Hu, Yufei; Wang, Jian; Kawamura, Airi
  • Chemistry of Materials, Vol. 27, Issue 1
  • DOI: 10.1021/cm504059t

Improved Thermoelectric Properties in Lu-doped Yb$_{14}$MnSb$_{11}$ Zintl Compounds
journal, February 2012


Synthesis, crystal structure and physical properties of the solid solutions Ca 14– x RE x CdSb 11 ( RE  = La–Nd, Sm, Gd–Yb, x  ≈ 0.85 ± 0.15)
journal, June 2019

  • Baranets, Sviatoslav; Voss, Leonard; Stoyko, Stanislav
  • Journal of Applied Physics, Vol. 125, Issue 24
  • DOI: 10.1063/1.5099632

Works referencing / citing this record:

Exploration of Multi-Component Vanadium and Titanium Pnictides Using Flux Growth and Conventional High-Temperature Methods
journal, January 2020


Exploration of Multi-Component Vanadium and Titanium Pnictides Using Flux Growth and Conventional High-Temperature Methods
journal, January 2020


On the New Oxyarsenides Eu5Zn2As5O and Eu5Cd2As5O
journal, June 2020

  • Darone, Gregory M.; Baranets, Sviatoslav A.; Bobev, Svilen
  • Crystals, Vol. 10, Issue 6
  • DOI: 10.3390/cryst10060475