DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stability analysis and discretization of A–$Φ$ time domain integral equations for multiscale electromagnetics

Abstract

The growth of applications at the intersection between electromagnetic and quantum physics is necessitating the creation of novel computational electromagnetic solvers. Work in this paper presents a new set of time domain integral equations (TDIEs) formulated directly in terms of the magnetic vector and electric scalar potentials that can be used to meet many of the requirements of this emerging area. Stability for this new set of TDIEs is achieved by leveraging an existing rigorous functional framework that can be used to determine suitable discretization approaches to yield stable results in practice. The basics of this functional framework are reviewed before it is shown in detail how it may be applied in developing the TDIEs of this work. Numerical results are presented which validate the claims of stability and accuracy of this method over a wide range of frequencies where traditional methods would fail.

Authors:
ORCiD logo [1];  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Illinois at Urbana-Champaign, IL (United States)
  2. Univ. of Illinois at Urbana-Champaign, IL (United States); Purdue Univ., West Lafayette, IN (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF)
OSTI Identifier:
1595015
Alternate Identifier(s):
OSTI ID: 1691938
Report Number(s):
SAND-2019-14970J
Journal ID: ISSN 0021-9991; 682269; TRN: US2100886
Grant/Contract Number:  
AC04-94AL85000; ECCS-169195; NA0003525; AF Sub RRI PO0539
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Computational Physics
Additional Journal Information:
Journal Volume: 408; Journal Issue: C; Journal ID: ISSN 0021-9991
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; Electromagnetics; Time domain integral equations; Stability analysis

Citation Formats

Roth, Thomas E., and Chew, Weng C. Stability analysis and discretization of A–$Φ$ time domain integral equations for multiscale electromagnetics. United States: N. p., 2019. Web. doi:10.1016/j.jcp.2019.109102.
Roth, Thomas E., & Chew, Weng C. Stability analysis and discretization of A–$Φ$ time domain integral equations for multiscale electromagnetics. United States. https://doi.org/10.1016/j.jcp.2019.109102
Roth, Thomas E., and Chew, Weng C. Sat . "Stability analysis and discretization of A–$Φ$ time domain integral equations for multiscale electromagnetics". United States. https://doi.org/10.1016/j.jcp.2019.109102. https://www.osti.gov/servlets/purl/1595015.
@article{osti_1595015,
title = {Stability analysis and discretization of A–$Φ$ time domain integral equations for multiscale electromagnetics},
author = {Roth, Thomas E. and Chew, Weng C.},
abstractNote = {The growth of applications at the intersection between electromagnetic and quantum physics is necessitating the creation of novel computational electromagnetic solvers. Work in this paper presents a new set of time domain integral equations (TDIEs) formulated directly in terms of the magnetic vector and electric scalar potentials that can be used to meet many of the requirements of this emerging area. Stability for this new set of TDIEs is achieved by leveraging an existing rigorous functional framework that can be used to determine suitable discretization approaches to yield stable results in practice. The basics of this functional framework are reviewed before it is shown in detail how it may be applied in developing the TDIEs of this work. Numerical results are presented which validate the claims of stability and accuracy of this method over a wide range of frequencies where traditional methods would fail.},
doi = {10.1016/j.jcp.2019.109102},
journal = {Journal of Computational Physics},
number = C,
volume = 408,
place = {United States},
year = {2019},
month = {11}
}

Works referenced in this record:

VECTOR POTENTIAL ELECTROMAGNETICS WITH GENERALIZED GAUGE FOR INHOMOGENEOUS MEDIA: FORMULATION (Invited Paper)
journal, January 2014


Quantum Electromagnetics: A New Look—Part I
journal, January 2016

  • Chew, W. C.; Liu, A. Y.; Salazar-Lazaro, C.
  • IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 1
  • DOI: 10.1109/JMMCT.2016.2617018

The Casimir effect in microstructured geometries
journal, March 2011

  • Rodriguez, Alejandro W.; Capasso, Federico; Johnson, Steven G.
  • Nature Photonics, Vol. 5, Issue 4
  • DOI: 10.1038/nphoton.2011.39

Casimir forces in the time domain: Applications
journal, January 2010

  • McCauley, Alexander P.; Rodriguez, Alejandro W.; Joannopoulos, John D.
  • Physical Review A, Vol. 81, Issue 1
  • DOI: 10.1103/PhysRevA.81.012119

Finite-Difference Time-Domain Simulation of the Maxwell–Schrödinger System
journal, January 2016

  • Ryu, Christopher Jayun; Liu, Aiyin Y.; Sha, Wei E. I.
  • IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 1
  • DOI: 10.1109/JMMCT.2016.2605378

Efficient evaluation of Casimir force in arbitrary three-dimensional geometries by integral equation methods
journal, May 2010


Dressed Atom Fields and Dressed States in Waveguide Quantum Electrodynamics
journal, January 2017

  • Liu, Aiyin Y.; Chew, Weng Cho
  • IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 2
  • DOI: 10.1109/JMMCT.2017.2698341

Systematic study of spontaneous emission in a two-dimensional arbitrary inhomogeneous environment
journal, April 2011


Integral-equation-based analysis of transient scattering and radiation from conducting bodies at very low frequencies
journal, January 2001

  • Chen, N. -W.; Aygün, K.; Michielssen, E.
  • IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 148, Issue 6
  • DOI: 10.1049/ip-map:20010827

Time Domain CalderÓn Identities and Their Application to the Integral Equation Analysis of Scattering by PEC Objects Part I: Preconditioning
journal, August 2009

  • Cools, K.; Andriulli, F. P.; Olyslager, F.
  • IEEE Transactions on Antennas and Propagation, Vol. 57, Issue 8
  • DOI: 10.1109/TAP.2009.2024460

Solving the EFIE at Low Frequencies With a Conditioning That Grows Only Logarithmically With the Number of Unknowns
journal, May 2010

  • Andriulli, Francesco P.; Tabacco, Anita; Vecchi, Giuseppe
  • IEEE Transactions on Antennas and Propagation, Vol. 58, Issue 5
  • DOI: 10.1109/TAP.2010.2044325

Finite Element Implementation of the Generalized-Lorenz Gauged A- $\Phi $ Formulation for Low-Frequency Circuit Modeling
journal, October 2016

  • Li, Yan-Lin; Sun, Sheng; Dai, Qi I.
  • IEEE Transactions on Antennas and Propagation, Vol. 64, Issue 10
  • DOI: 10.1109/TAP.2016.2593748

A Potential-Based Integral Equation Method for Low-Frequency Electromagnetic Problems
journal, March 2018

  • Liu, Qin S.; Sun, Sheng; Chew, Weng Cho
  • IEEE Transactions on Antennas and Propagation, Vol. 66, Issue 3
  • DOI: 10.1109/TAP.2018.2794388

Development of Stable A- $\Phi$ Time-Domain Integral Equations for Multiscale Electromagnetics
journal, January 2018

  • Roth, Thomas E.; Chew, Weng C.
  • IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 3
  • DOI: 10.1109/JMMCT.2018.2889535

Time Domain Adaptive Integral Method for Surface Integral Equations
journal, October 2004

  • Yilmaz, A. E.; Jin, J. -M.; Michielssen, E.
  • IEEE Transactions on Antennas and Propagation, Vol. 52, Issue 10
  • DOI: 10.1109/TAP.2004.834399

Averaging techniques for time-marching schemes for retarded potential integral equations
journal, May 1997


A Novel Scheme for the Solution of the Time-Domain Integral Equations of Electromagnetics
journal, January 2004

  • Weile, D. S.; Pisharody, G.; Chen, N. -W.
  • IEEE Transactions on Antennas and Propagation, Vol. 52, Issue 1
  • DOI: 10.1109/TAP.2003.822450

A Finite Difference Delay Modeling Approach to the Discretization of the Time Domain Integral Equations of Electromagnetics
journal, August 2008

  • Wang, Xiaobo; Wildman, Raymond A.; Weile, Daniel S.
  • IEEE Transactions on Antennas and Propagation, Vol. 56, Issue 8
  • DOI: 10.1109/TAP.2008.926753

Time Domain Integral Equation Analysis of Scattering From Composite Bodies via Exact Evaluation of Radiation Fields
journal, May 2009

  • Shanker, Balasubramaniam; Lu, Mingyu; Yuan, Jun
  • IEEE Transactions on Antennas and Propagation, Vol. 57, Issue 5
  • DOI: 10.1109/TAP.2009.2016700

Application of Analytical Retarded-Time Potential Expressions to the Solution of Time Domain Integral Equations
journal, November 2011

  • Ulku, H. A.; Ergin, A. A.
  • IEEE Transactions on Antennas and Propagation, Vol. 59, Issue 11
  • DOI: 10.1109/TAP.2011.2164180

Stability Properties of the Time Domain Electric Field Integral Equation Using a Separable Approximation for the Convolution With the Retarded Potential
journal, August 2012

  • Pray, Andrew J.; Nair, Naveen V.; Shanker, B.
  • IEEE Transactions on Antennas and Propagation, Vol. 60, Issue 8
  • DOI: 10.1109/TAP.2012.2201101

A Calderón Multiplicative Preconditioner for the PMCHWT Integral Equation
journal, December 2011

  • Cools, Kristof; Andriulli, Francesco P.; Michielssen, Eric
  • IEEE Transactions on Antennas and Propagation, Vol. 59, Issue 12
  • DOI: 10.1109/TAP.2011.2165465

Stability analysis of the marching-on-in-time boundary element method for electromagnetics
journal, March 2016

  • van ’t Wout, Elwin; van der Heul, Duncan R.; van der Ven, Harmen
  • Journal of Computational and Applied Mathematics, Vol. 294
  • DOI: 10.1016/j.cam.2015.09.002

Couplage éléments finis-potentiels retardés pour la diffraction électromagnétique par un obstacle hétérogène
journal, August 2001

  • Bachelot, Alain; Bounhoure, Laurent; Pujols, Agnès
  • Numerische Mathematik, Vol. 89, Issue 2
  • DOI: 10.1007/PL00005468

A Galerkin BEM for transient acoustic scattering by an absorbing obstacle
journal, January 2003

  • Ha-Duong, T.; Ludwig, B.; Terrasse, I.
  • International Journal for Numerical Methods in Engineering, Vol. 57, Issue 13
  • DOI: 10.1002/nme.745

Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I)
journal, January 1986

  • et T. Ha Duong, A. Bamberger; Nedelec, J. C.
  • Mathematical Methods in the Applied Sciences, Vol. 8, Issue 1
  • DOI: 10.1002/mma.1670080127

A new and improved analysis of the time domain boundary integral operators for the acoustic wave equation
journal, February 2017

  • Hassell, Matthew E.; Qiu, Tianyu; Sánchez-Vizuet, Tonatiuh
  • Journal of Integral Equations and Applications, Vol. 29, Issue 1
  • DOI: 10.1216/JIE-2017-29-1-107

Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics
journal, March 1997

  • Hsiao, G. C.; Kleinman, R. E.
  • IEEE Transactions on Antennas and Propagation, Vol. 45, Issue 3
  • DOI: 10.1109/8.558648

Electromagnetic scattering by surfaces of arbitrary shape
journal, May 1982

  • Rao, S.; Wilton, D.; Glisson, A.
  • IEEE Transactions on Antennas and Propagation, Vol. 30, Issue 3
  • DOI: 10.1109/TAP.1982.1142818

Numerical solution of saddle point problems
journal, April 2005


Analysis and Stabilization of the Low-Frequency Time-Domain Augmented EFIE
journal, January 2016

  • Jia, Miao Miao; Zhao, Yan Wen; Sun, Sheng
  • IEEE Antennas and Wireless Propagation Letters, Vol. 15
  • DOI: 10.1109/LAWP.2016.2532925

Reaction Concept in Electromagnetic Theory
journal, June 1954


A Higher Order Space-Time Galerkin Scheme for Time Domain Integral Equations
journal, December 2014

  • Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.
  • IEEE Transactions on Antennas and Propagation, Vol. 62, Issue 12
  • DOI: 10.1109/TAP.2014.2361156

A Space-Time Mixed Galerkin Marching-on-in-Time Scheme for the Time-Domain Combined Field Integral Equation
journal, March 2013

  • Beghein, Yves; Cools, Kristof; Bagci, Hakan
  • IEEE Transactions on Antennas and Propagation, Vol. 61, Issue 3
  • DOI: 10.1109/TAP.2012.2226553

The Influence of the Exact Evaluation of Radiation Fields in Finite Precision Arithmetic on the Stability of the Time Domain Integral Equation Method
journal, December 2013

  • van 't Wout, Elwin; van der Heul, Duncan R.; van der Ven, Harmen
  • IEEE Transactions on Antennas and Propagation, Vol. 61, Issue 12
  • DOI: 10.1109/TAP.2013.2281365

Calculation of cfie impedance matrix elements with RWG and n x RWG functions
journal, August 2003

  • Yla-Oijala, P.; Taskinen, M.
  • IEEE Transactions on Antennas and Propagation, Vol. 51, Issue 8
  • DOI: 10.1109/TAP.2003.814745

Time‐domain augmented electric field integral equation for a robust marching on in time solver
journal, June 2014


The stability of integral equation time-domain scattering computations for three-dimensional scattering; similarities and differences between electrodynamic and elastodynamic computations
journal, January 2002

  • Walker, S. P.; Bluck, M. J.; Chatzis, I.
  • International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 15, Issue 5-6
  • DOI: 10.1002/jnm.473