skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 12, 2020

Title: Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces

Abstract

Driven by the potential applications of ionic liquids (ILs) in many emerging electrochemical technologies, recent research efforts have been directed at understanding the complex ion ordering in these systems, to uncover novel energy storage mechanisms at IL–electrode interfaces. Here, we discover that surface-active ILs (SAILs), which contain amphiphilic structures inducing self-assembly, exhibit enhanced charge storage performance at electrified surfaces. We report that unlike conventional non-amphiphilic ILs, for which ion distribution is dominated by Coulombic interactions, SAILs exhibit significant and competing van der Waals interactions owing to the non-polar surfactant tails, leading to unusual interfacial ion distributions. We reveal that, at an intermediate degree of electrode polarization, SAILs display optimum performance, because the low-charge-density alkyl tails are effectively excluded from the electrode surfaces, whereas the formation of non-polar domains along the surface suppresses undesired overscreening effects. This work represents a crucial step towards understanding the unique interfacial behaviour and electrochemical properties of amphiphilic liquid systems showing long-range ordering, and offers insights into the design principles for high-energy-density electrolytes based on spontaneous self-assembly behaviour.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [2];  [6];  [5];  [7];  [8];  [9]; ORCiD logo [9]; ORCiD logo [2]
  1. Cornell Univ., Ithaca, NY (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Ecole Normale Supérieure de Lyon (France); Centre National de la Recherche Scientifique (CNRS), Lyon (France); Univ. of Chemistry and Technology, Prague (Czech Republic)
  4. Univ. of Chester (United Kingdom)
  5. Univ. of Western Australia, Perth, WA (Australia)
  6. Stanford Univ., CA (United States)
  7. Univ. of Bristol (United Kingdom)
  8. Inst. Laue–Langevin, Grenoble (France)
  9. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ecole Normale Supérieure de Lyon (France); Centre National de la Recherche Scientifique (CNRS), Lyon (France)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
Czech Science Foundation; Science and Technology Facilities Council (STFC) (United Kingdom); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1594997
Grant/Contract Number:  
[AC02-76SF00515; 19-04150Y]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
[ Journal Volume: 18; Journal Issue: 12]; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Electrochemistry; Energy transfer; Molecular dynamics; Molecular self-assembly

Citation Formats

Mao, Xianwen, Brown, Paul, Červinka, Ctirad, Hazell, Gavin, Li, Hua, Ren, Yinying, Chen, Di, Atkin, Rob, Eastoe, Julian, Grillo, Isabelle, Padua, Agilio. A. H., Costa Gomes, Margarida. F., and Hatton, T. Alan. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. United States: N. p., 2019. Web. doi:10.1038/s41563-019-0449-6.
Mao, Xianwen, Brown, Paul, Červinka, Ctirad, Hazell, Gavin, Li, Hua, Ren, Yinying, Chen, Di, Atkin, Rob, Eastoe, Julian, Grillo, Isabelle, Padua, Agilio. A. H., Costa Gomes, Margarida. F., & Hatton, T. Alan. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. United States. doi:10.1038/s41563-019-0449-6.
Mao, Xianwen, Brown, Paul, Červinka, Ctirad, Hazell, Gavin, Li, Hua, Ren, Yinying, Chen, Di, Atkin, Rob, Eastoe, Julian, Grillo, Isabelle, Padua, Agilio. A. H., Costa Gomes, Margarida. F., and Hatton, T. Alan. Mon . "Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces". United States. doi:10.1038/s41563-019-0449-6.
@article{osti_1594997,
title = {Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces},
author = {Mao, Xianwen and Brown, Paul and Červinka, Ctirad and Hazell, Gavin and Li, Hua and Ren, Yinying and Chen, Di and Atkin, Rob and Eastoe, Julian and Grillo, Isabelle and Padua, Agilio. A. H. and Costa Gomes, Margarida. F. and Hatton, T. Alan},
abstractNote = {Driven by the potential applications of ionic liquids (ILs) in many emerging electrochemical technologies, recent research efforts have been directed at understanding the complex ion ordering in these systems, to uncover novel energy storage mechanisms at IL–electrode interfaces. Here, we discover that surface-active ILs (SAILs), which contain amphiphilic structures inducing self-assembly, exhibit enhanced charge storage performance at electrified surfaces. We report that unlike conventional non-amphiphilic ILs, for which ion distribution is dominated by Coulombic interactions, SAILs exhibit significant and competing van der Waals interactions owing to the non-polar surfactant tails, leading to unusual interfacial ion distributions. We reveal that, at an intermediate degree of electrode polarization, SAILs display optimum performance, because the low-charge-density alkyl tails are effectively excluded from the electrode surfaces, whereas the formation of non-polar domains along the surface suppresses undesired overscreening effects. This work represents a crucial step towards understanding the unique interfacial behaviour and electrochemical properties of amphiphilic liquid systems showing long-range ordering, and offers insights into the design principles for high-energy-density electrolytes based on spontaneous self-assembly behaviour.},
doi = {10.1038/s41563-019-0449-6},
journal = {Nature Materials},
number = [12],
volume = [18],
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 12, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Modeling Ionic Liquids Using a Systematic All-Atom Force Field
journal, February 2004

  • Canongia Lopes, José N.; Deschamps, Johnny; Pádua, Agílio A. H.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 6
  • DOI: 10.1021/jp0362133

Multiscale Studies on Ionic Liquids
journal, February 2017


Ionic-liquid materials for the electrochemical challenges of the future
journal, July 2009

  • Armand, Michel; Endres, Frank; MacFarlane, Douglas R.
  • Nature Materials, Vol. 8, Issue 8, p. 621-629
  • DOI: 10.1038/nmat2448

Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field
journal, January 2001

  • Price, Melissa L. P.; Ostrovsky, Dennis; Jorgensen, William L.
  • Journal of Computational Chemistry, Vol. 22, Issue 13
  • DOI: 10.1002/jcc.1092

Anionic Surfactant Ionic Liquids with 1-Butyl-3-methyl-imidazolium Cations: Characterization and Application
journal, January 2012

  • Brown, Paul; Butts, Craig P.; Eastoe, Julian
  • Langmuir, Vol. 28, Issue 5
  • DOI: 10.1021/la204557t

Amphiphilically Nanostructured Deep Eutectic Solvents
journal, June 2018

  • McDonald, Samila; Murphy, Thomas; Imberti, Silvia
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 14
  • DOI: 10.1021/acs.jpclett.8b01720

Ionic liquids and their solid-state analogues as materials for energy generation and storage
journal, January 2016

  • MacFarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.
  • Nature Reviews Materials, Vol. 1, Issue 2
  • DOI: 10.1038/natrevmats.2015.5

Ion structure controls ionic liquid near-surface and interfacial nanostructure
journal, January 2015

  • Elbourne, Aaron; Voïtchovsky, Kislon; Warr, Gregory G.
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC02727B

Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon
journal, August 2010

  • Pech, David; Brunet, Magali; Durou, Hugo
  • Nature Nanotechnology, Vol. 5, Issue 9, p. 651-654
  • DOI: 10.1038/nnano.2010.162

Self-reporting and self-regulating liquid crystals
journal, May 2018


Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential
journal, November 2000


Molecular Solutes in Ionic Liquids: A Structural Perspective
journal, November 2007

  • Pádua, Agílio A. H.; Costa Gomes, Margarida F.; Canongia Lopes, José N. A.
  • Accounts of Chemical Research, Vol. 40, Issue 11
  • DOI: 10.1021/ar700050q

Electrolyte design strategies and research progress for room-temperature sodium-ion batteries
journal, January 2017

  • Che, Haiying; Chen, Suli; Xie, Yingying
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00524E

High temperature electrical energy storage: advances, challenges, and frontiers
journal, January 2016

  • Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy
  • Chemical Society Reviews, Vol. 45, Issue 21
  • DOI: 10.1039/C6CS00012F

Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
journal, March 1977

  • Ryckaert, Jean-Paul; Ciccotti, Giovanni; Berendsen, Herman J. C.
  • Journal of Computational Physics, Vol. 23, Issue 3
  • DOI: 10.1016/0021-9991(77)90098-5

Ionic Liquids at Electrified Interfaces
journal, March 2014

  • Fedorov, Maxim V.; Kornyshev, Alexei A.
  • Chemical Reviews, Vol. 114, Issue 5
  • DOI: 10.1021/cr400374x

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Long-range electrostatic screening in ionic liquids
journal, May 2015

  • Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 24
  • DOI: 10.1073/pnas.1508366112

Remarkably High Heterogeneous Electron Transfer Activity of Carbon-Nanotube-Supported Reduced Graphene Oxide
journal, October 2016


On the molecular origin of supercapacitance in nanoporous carbon electrodes
journal, March 2012

  • Merlet, Céline; Rotenberg, Benjamin; Madden, Paul A.
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3260

Efficient storage mechanisms for building better supercapacitors
journal, May 2016


Ionic liquids behave as dilute electrolyte solutions
journal, May 2013

  • Gebbie, M. A.; Valtiner, M.; Banquy, X.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 24
  • DOI: 10.1073/pnas.1307871110

Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores
journal, September 2017

  • Futamura, Ryusuke; Iiyama, Taku; Takasaki, Yuma
  • Nature Materials, Vol. 16, Issue 12
  • DOI: 10.1038/nmat4974

Manipulating Solute Nucleophilicity with Room Temperature Ionic Liquids
journal, September 2004

  • Crowhurst, Lorna; Lancaster, N. Llewellyn; Pérez Arlandis, Juan M.
  • Journal of the American Chemical Society, Vol. 126, Issue 37
  • DOI: 10.1021/ja046757y

The anatomy of the double layer and capacitance in ionic liquids with anisotropic ions: Electrostriction vs. lattice saturation
journal, November 2010


Electrospun Carbon Nanofiber Webs with Controlled Density of States for Sensor Applications
journal, December 2012

  • Mao, Xianwen; Simeon, Fritz; Rutledge, Gregory C.
  • Advanced Materials, Vol. 25, Issue 9
  • DOI: 10.1002/adma.201203045

Nanostructural Organization in Ionic Liquids
journal, February 2006

  • Canongia Lopes, José N. A.; Pádua, Agílio A. H.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 7
  • DOI: 10.1021/jp056006y

Structure and Nanostructure in Ionic Liquids
journal, June 2015

  • Hayes, Robert; Warr, Gregory G.; Atkin, Rob
  • Chemical Reviews, Vol. 115, Issue 13
  • DOI: 10.1021/cr500411q

Influence of surface topology and electrostatic potential on water/electrode systems
journal, January 1995

  • Siepmann, J. Ilja; Sprik, Michiel
  • The Journal of Chemical Physics, Vol. 102, Issue 1
  • DOI: 10.1063/1.469429

Electrochemical interface between an ionic liquid and a model metallic electrode
journal, February 2007

  • Reed, Stewart K.; Lanning, Oliver J.; Madden, Paul A.
  • The Journal of Chemical Physics, Vol. 126, Issue 8
  • DOI: 10.1063/1.2464084

Microwave-Assisted Oxidation of Electrospun Turbostratic Carbon Nanofibers for Tailoring Energy Storage Capabilities
journal, June 2015


Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces
journal, October 2012

  • Zhou, Hua; Rouha, Michael; Feng, Guang
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn303355b

Molecular Layering of Fluorinated Ionic Liquids at a Charged Sapphire (0001) Surface
journal, October 2008


Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid
journal, January 2013

  • Pak, Alexander J.; Paek, Eunsu; Hwang, Gyeong S.
  • Phys. Chem. Chem. Phys., Vol. 15, Issue 45
  • DOI: 10.1039/C3CP52590B

Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems
journal, June 2012

  • Simon, P.; Gogotsi, Y.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200306b

Electrodeposited conductive polymers for controlled drug release: polypyrrole
journal, August 2015

  • Alshammary, B.; Walsh, F. C.; Herrasti, P.
  • Journal of Solid State Electrochemistry, Vol. 20, Issue 4
  • DOI: 10.1007/s10008-015-2982-9

Carbon Nanocages as Supercapacitor Electrode Materials
journal, December 2011


Recent Advances in Non-Aqueous Electrolyte for Rechargeable Li-O 2 Batteries
journal, June 2016

  • Li, Yang; Wang, Xiaogang; Dong, Shanmu
  • Advanced Energy Materials, Vol. 6, Issue 18
  • DOI: 10.1002/aenm.201600751

Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene
journal, August 2015

  • Wang, Luda; Drahushuk, Lee W.; Cantley, Lauren
  • Nature Nanotechnology, Vol. 10, Issue 9
  • DOI: 10.1038/nnano.2015.158

Anharmonicity, solvation forces, and resolution in atomic force microscopy at the solid-liquid interface
journal, August 2013


Host–guest chemistry of rotaxanes and catenanes: application of a polarizable all-atom force field to cyclobis(paraquat-p-phenylene) complexes with disubstituted benzenes and biphenyls †
journal, January 1999

  • Kaminski, George A.; Jorgensen, William L.
  • Journal of the Chemical Society, Perkin Transactions 2, Issue 11
  • DOI: 10.1039/a905160k

Self-assembly in the electrical double layer of ionic liquids
journal, January 2011

  • Perkin, Susan; Crowhurst, Lorna; Niedermeyer, Heiko
  • Chemical Communications, Vol. 47, Issue 23
  • DOI: 10.1039/c1cc11322d

CL&P: A generic and systematic force field for ionic liquids modeling
journal, February 2012

  • Canongia Lopes, José N.; Pádua, Agílio A. H.
  • Theoretical Chemistry Accounts, Vol. 131, Issue 3
  • DOI: 10.1007/s00214-012-1129-7

Molecular Force Field for Ionic Liquids IV:  Trialkylimidazolium and Alkoxycarbonyl-Imidazolium Cations; Alkylsulfonate and Alkylsulfate Anions
journal, April 2008

  • Canongia Lopes, José N.; Pádua, Agílio A. H.; Shimizu, Karina
  • The Journal of Physical Chemistry B, Vol. 112, Issue 16
  • DOI: 10.1021/jp800281e

Nanoconfined Ionic Liquids
journal, December 2016


A review of electrolyte materials and compositions for electrochemical supercapacitors
journal, January 2015

  • Zhong, Cheng; Deng, Yida; Hu, Wenbin
  • Chemical Society Reviews, Vol. 44, Issue 21
  • DOI: 10.1039/C5CS00303B

Evaluation of the constant potential method in simulating electric double-layer capacitors
journal, November 2014

  • Wang, Zhenxing; Yang, Yang; Olmsted, David L.
  • The Journal of Chemical Physics, Vol. 141, Issue 18
  • DOI: 10.1063/1.4899176

Double layer in ionic liquids: The nature of the camel shape of capacitance
journal, February 2010


Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour
journal, March 2015


Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes
journal, May 2018


Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids
journal, January 2013

  • Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 3
  • DOI: 10.1021/jz301965d

Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes
journal, June 2014

  • Mefford, J. Tyler; Hardin, William G.; Dai, Sheng
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat4000

Double Layer in Ionic Liquids: Overscreening versus Crowding
journal, January 2011


Double-Layer in Ionic Liquids:  Paradigm Change?
journal, May 2007

  • Kornyshev, Alexei A.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 20
  • DOI: 10.1021/jp067857o

Ionic liquid nanotribology: mica–silica interactions in ethylammonium nitrate
journal, January 2012

  • Werzer, Oliver; Cranston, Emily D.; Warr, Gregory G.
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 15
  • DOI: 10.1039/C1CP23134K