DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal–Ligand Cooperation

Abstract

The reversible activation of H2 via a pathway involving metal–ligand cooperation (MLC) is proposed to be important in many transition metal catalyzed hydrogenation and dehydrogenation reactions. Nevertheless, there is a paucity of experimental information probing the mechanism of this transformation. In this paper, we present an in-depth kinetic study of the 1,2-addition of H2 via an MLC pathway to the widely used iron catalyst [(iPrPNP)FeH(CO)] (1) (iPrPNP = N(CH2CH2PiPr2)2). We report one of the first experimental demonstrations of an enhancement in rate for the activation of H2 using protic additives, which operate as “proton shuttles”. Our results indicate that proton shuttles need to be able to both simultaneously donate and accept a proton, and the best shuttles are molecules that are strong hydrogen bond donors but sufficiently weak acids to avoid deleterious protonation of the transition metal complex. Additionally, comparison of the rate of H2 activation via an MLC pathway between 1 and two widely used ruthenium catalysts enables more general conclusions about the role of the metal, ancillary ligand, and proton shuttles in H2 activation. The results of this study provide guidance about the design of catalysts and additives to promote H2 activation via an MLC pathway.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Yale Univ., New Haven, CT (United States)
  2. Univ. of Missouri, Columbia, MO (United States)
Publication Date:
Research Org.:
Univ. of Missouri, Columbia, MO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1594892
Grant/Contract Number:  
SC0018222
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 141; Journal Issue: 43; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Smith, Nicholas E., Bernskoetter, Wesley H., and Hazari, Nilay. The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal–Ligand Cooperation. United States: N. p., 2019. Web. doi:10.1021/jacs.9b09062.
Smith, Nicholas E., Bernskoetter, Wesley H., & Hazari, Nilay. The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal–Ligand Cooperation. United States. https://doi.org/10.1021/jacs.9b09062
Smith, Nicholas E., Bernskoetter, Wesley H., and Hazari, Nilay. Wed . "The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal–Ligand Cooperation". United States. https://doi.org/10.1021/jacs.9b09062. https://www.osti.gov/servlets/purl/1594892.
@article{osti_1594892,
title = {The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal–Ligand Cooperation},
author = {Smith, Nicholas E. and Bernskoetter, Wesley H. and Hazari, Nilay},
abstractNote = {The reversible activation of H2 via a pathway involving metal–ligand cooperation (MLC) is proposed to be important in many transition metal catalyzed hydrogenation and dehydrogenation reactions. Nevertheless, there is a paucity of experimental information probing the mechanism of this transformation. In this paper, we present an in-depth kinetic study of the 1,2-addition of H2 via an MLC pathway to the widely used iron catalyst [(iPrPNP)FeH(CO)] (1) (iPrPNP = N(CH2CH2PiPr2)2–). We report one of the first experimental demonstrations of an enhancement in rate for the activation of H2 using protic additives, which operate as “proton shuttles”. Our results indicate that proton shuttles need to be able to both simultaneously donate and accept a proton, and the best shuttles are molecules that are strong hydrogen bond donors but sufficiently weak acids to avoid deleterious protonation of the transition metal complex. Additionally, comparison of the rate of H2 activation via an MLC pathway between 1 and two widely used ruthenium catalysts enables more general conclusions about the role of the metal, ancillary ligand, and proton shuttles in H2 activation. The results of this study provide guidance about the design of catalysts and additives to promote H2 activation via an MLC pathway.},
doi = {10.1021/jacs.9b09062},
journal = {Journal of the American Chemical Society},
number = 43,
volume = 141,
place = {United States},
year = {Wed Oct 16 00:00:00 EDT 2019},
month = {Wed Oct 16 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Mechanisms for H2 activation by a transition metal complex involving (a) Oxidative addition and (b) Metal-ligand cooperation (MLC).

Save / Share:

Works referenced in this record:

Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes
journal, October 2018


On‐the‐fly Catalyst Modification: Strategy to Improve Catalytic Processes Selectivity and Understanding
journal, June 2019


Approaches to the synthesis of Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions
journal, November 2020


Cobalt–Pincer Complexes in Catalysis
journal, December 2018

  • Junge, Kathrin; Papa, Veronica; Beller, Matthias
  • Chemistry – A European Journal, Vol. 25, Issue 1
  • DOI: 10.1002/chem.201803016

Homogeneous catalytic hydrogenation: A retrospective account
journal, November 1980


Activation of dihydrogen and coordination of molecular H2 on transition metals
journal, February 2014


Dihydrogen Complexation
journal, March 2016


Selective Hydrogenation for Fine Chemicals: Recent Trends and New Developments
journal, January 2003

  • Blaser, Hans-Ulrich; Malan, Christophe; Pugin, Benoît
  • Advanced Synthesis & Catalysis, Vol. 345, Issue 12
  • DOI: 10.1002/adsc.200390000

Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes
journal, December 2004

  • Clapham, Sean E.; Hadzovic, Alen; Morris, Robert H.
  • Coordination Chemistry Reviews, Vol. 248, Issue 21-24
  • DOI: 10.1016/j.ccr.2004.04.007

Cooperating Ligands in Catalysis
journal, February 2008

  • Grützmacher, Hansjörg
  • Angewandte Chemie International Edition, Vol. 47, Issue 10
  • DOI: 10.1002/anie.200704654

Metal-Ligand Cooperation
journal, September 2015

  • Khusnutdinova, Julia R.; Milstein, David
  • Angewandte Chemie International Edition, Vol. 54, Issue 42
  • DOI: 10.1002/anie.201503873

Exploiting Metal–Ligand Bifunctional Reactions in the Design of Iron Asymmetric Hydrogenation Catalysts
journal, April 2015


First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands
journal, October 2018


Hydrogen Elimination from a Hydroxycyclopentadienyl Ruthenium(II) Hydride:  Study of Hydrogen Activation in a Ligand−Metal Bifunctional Hydrogenation Catalyst
journal, March 2005

  • Casey, Charles P.; Johnson, Jeffrey B.; Singer, Steven W.
  • Journal of the American Chemical Society, Vol. 127, Issue 9
  • DOI: 10.1021/ja043460r

Cyclopentadienone Iron Alcohol Complexes: Synthesis, Reactivity, and Implications for the Mechanism of Iron-Catalyzed Hydrogenation of Aldehydes
journal, February 2009

  • Casey, Charles P.; Guan, Hairong
  • Journal of the American Chemical Society, Vol. 131, Issue 7
  • DOI: 10.1021/ja808683z

Osmium and Ruthenium Catalysts for Dehydrogenation of Alcohols
journal, July 2011

  • Bertoli, Marcello; Choualeb, Aldjia; Lough, Alan J.
  • Organometallics, Vol. 30, Issue 13
  • DOI: 10.1021/om200437n

Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions
journal, December 2013

  • Alberico, Elisabetta; Sponholz, Peter; Cordes, Christoph
  • Angewandte Chemie, Vol. 125, Issue 52
  • DOI: 10.1002/ange.201307224

A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles
journal, June 2014

  • Chakraborty, Sumit; Brennessel, William W.; Jones, William D.
  • Journal of the American Chemical Society, Vol. 136, Issue 24
  • DOI: 10.1021/ja504523b

Highly Active Iron Catalyst for Ammonia Borane Dehydrocoupling at Room Temperature
journal, November 2015


Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst
journal, March 2015

  • Bielinski, Elizabeth A.; Förster, Moritz; Zhang, Yuanyuan
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/acscatal.5b00137

Iron(II) Pincer-Catalyzed Synthesis of Lactones and Lactams through a Versatile Dehydrogenative Domino Sequence
journal, February 2015

  • Peña-López, Miguel; Neumann, Helfried; Beller, Matthias
  • ChemCatChem, Vol. 7, Issue 5
  • DOI: 10.1002/cctc.201402967

Selective conversion of glycerol to lactic acid with iron pincer precatalysts
journal, January 2015

  • Sharninghausen, Liam S.; Mercado, Brandon Q.; Crabtree, Robert H.
  • Chemical Communications, Vol. 51, Issue 90
  • DOI: 10.1039/C5CC06857F

Formation of high-molecular weight polyaminoborane by Fe hydride catalysed dehydrocoupling of methylamine borane
journal, January 2017

  • Anke, F.; Han, D.; Klahn, M.
  • Dalton Transactions, Vol. 46, Issue 21
  • DOI: 10.1039/C7DT01487B

Iron-Catalyzed Amide Formation from the Dehydrogenative Coupling of Alcohols and Secondary Amines
journal, May 2017


An Uncanny Dehydrogenation Mechanism: Polar Bond Control over Stepwise or Concerted Transition States
journal, April 2017


Mechanism of the Hydrogenation of Ketones Catalyzed by trans- Dihydrido(diamine)ruthenium(II) Complexes
journal, December 2002

  • Abdur-Rashid, Kamaluddin; Clapham, Sean E.; Hadzovic, Alen
  • Journal of the American Chemical Society, Vol. 124, Issue 50
  • DOI: 10.1021/ja016817p

Metal–ligand cooperation in the trans addition of dihydrogen to a pincer Ir(i) complex: a DFT study
journal, January 2009

  • Iron, Mark A.; Ben-Ari, Eyal; Cohen, Revital
  • Dalton Transactions, Issue 43
  • DOI: 10.1039/b909852f

Well-Defined Iron Catalysts for the Acceptorless Reversible Dehydrogenation-Hydrogenation of Alcohols and Ketones
journal, October 2014

  • Chakraborty, Sumit; Lagaditis, Paraskevi O.; Förster, Moritz
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs5009656

Unravelling the Mechanism of the Asymmetric Hydrogenation of Acetophenone by [RuX 2 (diphosphine)(1,2-diamine)] Catalysts
journal, February 2014

  • Dub, Pavel A.; Henson, Neil J.; Martin, Richard L.
  • Journal of the American Chemical Society, Vol. 136, Issue 9
  • DOI: 10.1021/ja411374j

Why Does Alkylation of the N–H Functionality within M/NH Bifunctional Noyori-Type Catalysts Lead to Turnover?
journal, January 2017

  • Dub, Pavel A.; Scott, Brian L.; Gordon, John C.
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b11666

The role of the metal-bound N–H functionality in Noyori-type molecular catalysts
journal, November 2018


Highly Stereoselective Proton/Hydride Exchange: Assistance of Hydrogen Bonding for the Heterolytic Splitting of H 2
journal, December 2009

  • Friedrich, Anja; Drees, Markus; Schmedt auf der Günne, Jörn
  • Journal of the American Chemical Society, Vol. 131, Issue 48
  • DOI: 10.1021/ja908644n

A new group of ruthenium complexes: structure and catalysis
journal, November 1986

  • Shvo, Youval.; Czarkie, Dorotha.; Rahamim, Yocheved.
  • Journal of the American Chemical Society, Vol. 108, Issue 23
  • DOI: 10.1021/ja00283a041

A Ruthenium(II) Complex with a C 2 -Symmetric Diphosphine/Diamine Tetradentate Ligand for Asymmetric Transfer Hydrogenation of Aromatic Ketones
journal, January 1996

  • Gao, Jing-Xing; Ikariya, Takao; Noyori, Ryoji
  • Organometallics, Vol. 15, Issue 4
  • DOI: 10.1021/om950833b

Hydrogenation and Dehydrogenation Iron Pincer Catalysts Capable of Metal–Ligand Cooperation by Aromatization/Dearomatization
journal, June 2015


Iron-Based Catalysts for the Hydrogenation of Esters to Alcohols
journal, May 2014

  • Chakraborty, Sumit; Dai, Huiguang; Bhattacharya, Papri
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja504034q

Hydrogenation of Esters to Alcohols with a Well-Defined Iron Complex
journal, May 2014

  • Werkmeister, Svenja; Junge, Kathrin; Wendt, Bianca
  • Angewandte Chemie International Edition, Vol. 53, Issue 33
  • DOI: 10.1002/anie.201402542

Mild and selective hydrogenation of aromatic and aliphatic (di)nitriles with a well-defined iron pincer complex
journal, June 2014

  • Bornschein, Christoph; Werkmeister, Svenja; Wendt, Bianca
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5111

Selective Hydrogenation of Amides to Amines and Alcohols Catalyzed by Improved Iron Pincer Complexes
journal, May 2016


Iron-Catalyzed Hydrogenation of Amides to Alcohols and Amines
journal, August 2016

  • Rezayee, Nomaan M.; Samblanet, Danielle C.; Sanford, Melanie S.
  • ACS Catalysis, Vol. 6, Issue 10
  • DOI: 10.1021/acscatal.6b01454

Selective Iron-Catalyzed Deaminative Hydrogenation of Amides
journal, January 2017


Iron-Catalyzed Homogeneous Hydrogenation of Alkenes under Mild Conditions by a Stepwise, Bifunctional Mechanism
journal, February 2016


Iron catalyzed CO 2 hydrogenation to formate enhanced by Lewis acid co-catalysts
journal, January 2015

  • Zhang, Yuanyuan; MacIntosh, Alex D.; Wong, Janice L.
  • Chemical Science, Vol. 6, Issue 7
  • DOI: 10.1039/C5SC01467K

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

COPASI--a COmplex PAthway SImulator
journal, October 2006


σ-Bond Metathesis: A 30-Year Retrospective
journal, September 2013


Metal, bond energy, and ancillary ligand effects on actinide-carbon .sigma.-bond hydrogenolysis. A kinetic and mechanistic study
journal, December 1987

  • Lin, Zerong; Marks, Tobin J.
  • Journal of the American Chemical Society, Vol. 109, Issue 26
  • DOI: 10.1021/ja00260a007

Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms
journal, August 2011

  • Gómez-Gallego, Mar; Sierra, Miguel A.
  • Chemical Reviews, Vol. 111, Issue 8
  • DOI: 10.1021/cr100436k

The Key Role of the Hemiaminal Intermediate in the Iron-Catalyzed Deaminative Hydrogenation of Amides
journal, August 2018

  • Artús Suàrez, Lluís; Culakova, Zuzana; Balcells, David
  • ACS Catalysis, Vol. 8, Issue 9
  • DOI: 10.1021/acscatal.8b02184

Towards a Green Process for Bulk-Scale Synthesis of Ethyl Acetate: Efficient Acceptorless Dehydrogenation of Ethanol
journal, April 2012

  • Nielsen, Martin; Junge, Henrik; Kammer, Anja
  • Angewandte Chemie International Edition, Vol. 51, Issue 23
  • DOI: 10.1002/anie.201200625

Selective Catalytic Hydrogenation of Diethyl Oxalate and Related Esters
journal, May 2013

  • Ziebart, Carolin; Jackstell, Ralf; Beller, Matthias
  • ChemCatChem, Vol. 5, Issue 11
  • DOI: 10.1002/cctc.201300209

Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide
journal, February 2013

  • Nielsen, Martin; Alberico, Elisabetta; Baumann, Wolfgang
  • Nature, Vol. 495, Issue 7439
  • DOI: 10.1038/nature11891

Efficient and Selective Hydrogen Generation from Bioethanol using Ruthenium Pincer-type Complexes
journal, August 2014

  • Sponholz, Peter; Mellmann, Dörthe; Cordes, Christoph
  • ChemSusChem, Vol. 7, Issue 9
  • DOI: 10.1002/cssc.201402426

Towards a Sustainable Synthesis of Formate Salts: Combined Catalytic Methanol Dehydrogenation and Bicarbonate Hydrogenation
journal, May 2014

  • Liu, Qiang; Wu, Lipeng; Gülak, Samet
  • Angewandte Chemie International Edition, Vol. 53, Issue 27
  • DOI: 10.1002/anie.201400456

Catalytic Conversion of Alcohols into Carboxylic Acid Salts in Water: Scope, Recycling, and Mechanistic Insights
journal, April 2016


A comparative computationally study about the defined m(II) pincer hydrogenation catalysts (m = fe, ru, os)
journal, May 2015

  • Jiao, Haijun; Junge, Kathrin; Alberico, Elisabetta
  • Journal of Computational Chemistry, Vol. 37, Issue 2
  • DOI: 10.1002/jcc.23944

Hydrosilane Synthesis by Catalytic Hydrogenolysis of Chlorosilanes and Silyl Triflates
journal, October 2018


Activation of carbon–hydrogen bonds and dihydrogen by 1,2-CH-addition across metal–heteroatom bonds
journal, January 2013

  • Webb, Joanna R.; Burgess, Samantha A.; Cundari, Thomas R.
  • Dalton Transactions, Vol. 42, Issue 48
  • DOI: 10.1039/c3dt52164h

N−H Activation of Amines and Ammonia by Ru via Metal−Ligand Cooperation
journal, June 2010

  • Khaskin, Eugene; Iron, Mark A.; Shimon, Linda J. W.
  • Journal of the American Chemical Society, Vol. 132, Issue 25
  • DOI: 10.1021/ja103130u

Metal–Ligand Cooperation by Aromatization–Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis
journal, August 2011

  • Gunanathan, Chidambaram; Milstein, David
  • Accounts of Chemical Research, Vol. 44, Issue 8
  • DOI: 10.1021/ar2000265

Aldehyde Binding through Reversible C–C Coupling with the Pincer Ligand upon Alcohol Dehydrogenation by a PNP–Ruthenium Catalyst
journal, June 2012

  • Montag, Michael; Zhang, Jing; Milstein, David
  • Journal of the American Chemical Society, Vol. 134, Issue 25
  • DOI: 10.1021/ja303121v

Works referencing / citing this record:

Dehydropolymerisation of Methylamine Borane and an N ‐Substituted Primary Amine Borane Using a PNP Fe Catalyst
journal, May 2020

  • Anke, Felix; Boye, Susanne; Spannenberg, Anke
  • Chemistry – A European Journal, Vol. 26, Issue 35
  • DOI: 10.1002/chem.202000809