skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite

Abstract

Birnessite is a low-cost and environmentally friendly layered material for aqueous electrochemical energy storage; however, its storage capacity is poor due to its narrow potential window in aqueous electrolyte and low redox activity. Herein we report a sodium rich disordered birnessite (Na 0.27MnO 2) for aqueous sodium-ion electrochemical storage with a much-enhanced capacity and cycling life (83 mAh g -1 after 5000 cycles in full-cell). Neutron total scattering and in situ X-ray diffraction measurements show that both structural water and the Na-rich disordered structure contribute to the improved electrochemical performance of current cathode material. Particularly, the co-deintercalation of the hydrated water and sodium-ion during the high potential charging process results in the shrinkage of interlayer distance and thus stabilizes the layered structure. Our results provide a genuine insight into how structural disordering and structural water improve sodium-ion storage in a layered electrode and open up an exciting direction for improving aqueous batteries.

Authors:
ORCiD logo; ; ; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Univ. of New Hampshire, Durham, NH (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
OSTI Identifier:
1594478
Alternate Identifier(s):
OSTI ID: 1580960
Grant/Contract Number:  
SC0018922; SC0010286; DMREF-1627583; AC02-06CH11357; AC02-05CH11231; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Shan, Xiaoqiang, Guo, Fenghua, Charles, Daniel S., Lebens-Higgins, Zachary, Abdel Razek, Sara, Wu, Jinpeng, Xu, Wenqian, Yang, Wanli, Page, Katharine L., Neuefeind, Joerg C., Feygenson, Mikhail, Piper, Louis F. J., and Teng, Xiaowei. Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. United States: N. p., 2019. Web. doi:10.1038/s41467-019-12939-3.
Shan, Xiaoqiang, Guo, Fenghua, Charles, Daniel S., Lebens-Higgins, Zachary, Abdel Razek, Sara, Wu, Jinpeng, Xu, Wenqian, Yang, Wanli, Page, Katharine L., Neuefeind, Joerg C., Feygenson, Mikhail, Piper, Louis F. J., & Teng, Xiaowei. Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. United States. doi:10.1038/s41467-019-12939-3.
Shan, Xiaoqiang, Guo, Fenghua, Charles, Daniel S., Lebens-Higgins, Zachary, Abdel Razek, Sara, Wu, Jinpeng, Xu, Wenqian, Yang, Wanli, Page, Katharine L., Neuefeind, Joerg C., Feygenson, Mikhail, Piper, Louis F. J., and Teng, Xiaowei. Thu . "Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite". United States. doi:10.1038/s41467-019-12939-3. https://www.osti.gov/servlets/purl/1594478.
@article{osti_1594478,
title = {Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite},
author = {Shan, Xiaoqiang and Guo, Fenghua and Charles, Daniel S. and Lebens-Higgins, Zachary and Abdel Razek, Sara and Wu, Jinpeng and Xu, Wenqian and Yang, Wanli and Page, Katharine L. and Neuefeind, Joerg C. and Feygenson, Mikhail and Piper, Louis F. J. and Teng, Xiaowei},
abstractNote = {Birnessite is a low-cost and environmentally friendly layered material for aqueous electrochemical energy storage; however, its storage capacity is poor due to its narrow potential window in aqueous electrolyte and low redox activity. Herein we report a sodium rich disordered birnessite (Na0.27MnO2) for aqueous sodium-ion electrochemical storage with a much-enhanced capacity and cycling life (83 mAh g-1 after 5000 cycles in full-cell). Neutron total scattering and in situ X-ray diffraction measurements show that both structural water and the Na-rich disordered structure contribute to the improved electrochemical performance of current cathode material. Particularly, the co-deintercalation of the hydrated water and sodium-ion during the high potential charging process results in the shrinkage of interlayer distance and thus stabilizes the layered structure. Our results provide a genuine insight into how structural disordering and structural water improve sodium-ion storage in a layered electrode and open up an exciting direction for improving aqueous batteries.},
doi = {10.1038/s41467-019-12939-3},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte
journal, January 2004

  • Brousse, Thierry; Toupin, Mathieu; Bélanger, Daniel
  • Journal of The Electrochemical Society, Vol. 151, Issue 4
  • DOI: 10.1149/1.1650835

Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation
journal, October 2017

  • Kondrakov, Aleksandr O.; Geßwein, Holger; Galdina, Kristina
  • The Journal of Physical Chemistry C, Vol. 121, Issue 44
  • DOI: 10.1021/acs.jpcc.7b06598

Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery
journal, July 2018


Large-Scale Synthesis and Comprehensive Structure Study of δ-MnO 2
journal, May 2018


Electrochemistry and Solid‐State Chemistry of NaMeO 2 (Me = 3d Transition Metals)
journal, June 2018

  • Kubota, Kei; Kumakura, Shinichi; Yoda, Yusuke
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703415

High-Energy MnO 2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors
journal, September 2010

  • Wu, Zhong-Shuai; Ren, Wencai; Wang, Da-Wei
  • ACS Nano, Vol. 4, Issue 10
  • DOI: 10.1021/nn101754k

Review—Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials
journal, January 2015

  • Clément, Raphaële J.; Bruce, Peter G.; Grey, Clare P.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0201514jes

Hydrate-melt electrolytes for high-energy-density aqueous batteries
journal, August 2016


Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials
journal, April 2018


Batteries: Widening voltage windows
journal, October 2016


On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials
journal, February 2010

  • Levi, E.; Gofer, Y.; Aurbach, D.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm9016497

Pseudocapacitive Hausmannite Nanoparticles with (101) Facets: Synthesis, Characterization, and Charge-Transfer Mechanism
journal, May 2013


Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Coinsertion
journal, July 2017

  • Sun, Wei; Wang, Fei; Hou, Singyuk
  • Journal of the American Chemical Society, Vol. 139, Issue 29
  • DOI: 10.1021/jacs.7b04471

Birnessite-type MnO 2 Nanowalls and Their Magnetic Properties
journal, October 2008

  • Zhu, H. T.; Luo, J.; Yang, H. X.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 44
  • DOI: 10.1021/jp804673n

Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries
journal, May 2015


Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells
journal, February 2002

  • Caballero, A.; Hernán, L.; Morales, J.
  • Journal of Materials Chemistry, Vol. 12, Issue 4
  • DOI: 10.1039/b108830k

Towards High Power High Energy Aqueous Sodium-Ion Batteries: The NaTi 2 (PO 4 ) 3 /Na 0.44 MnO 2 System
journal, October 2012


Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors
journal, January 1998

  • Liu, T. -C.
  • Journal of The Electrochemical Society, Vol. 145, Issue 6
  • DOI: 10.1149/1.1838571

Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Understanding structural stability of monoclinic LiMnO 2 and NaMnO 2 upon de-intercalation
journal, January 2016

  • Tian, Meng; Gao, Yurui; Wang, Zhaoxiang
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 26
  • DOI: 10.1039/C6CP02019D

Variation of the MnO 2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na 2 SO 4 Electrolyte
journal, April 2008

  • Athouël, Laurence; Moser, François; Dugas, Romain
  • The Journal of Physical Chemistry C, Vol. 112, Issue 18
  • DOI: 10.1021/jp0773029

Highly Efficient K 0.15 MnO 2 Birnessite Nanosheets for Stable Pseudocapacitive Cathodes
journal, September 2012

  • Yeager, Matthew; Du, Wenxin; Si, Rui
  • The Journal of Physical Chemistry C, Vol. 116, Issue 38
  • DOI: 10.1021/jp304809r

Prussian blue: a new framework of electrode materials for sodium batteries
journal, January 2012

  • Lu, Yuhao; Wang, Long; Cheng, Jinguang
  • Chemical Communications, Vol. 48, Issue 52, p. 6544-6546
  • DOI: 10.1039/c2cc31777j

Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries
journal, January 2016

  • Pasta, Mauro; Wang, Richard Y.; Ruffo, Riccardo
  • Journal of Materials Chemistry A, Vol. 4, Issue 11
  • DOI: 10.1039/C5TA10571D

A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation
journal, January 2012

  • Kim, Sangtae; Ma, Xiaohua; Ong, Shyue Ping
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 44
  • DOI: 10.1039/c2cp43377j

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor
journal, November 2007


Lattice Water for the Enhanced Performance of Amorphous Iron Phosphate in Sodium-Ion Batteries
journal, April 2017


Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide
journal, April 1995


An advanced cathode for Na-ion batteries with high rate and excellent structural stability
journal, January 2013

  • Lee, Dae Hoe; Xu, Jing; Meng, Ying Shirley
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 9
  • DOI: 10.1039/c2cp44467d

A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
journal, January 2012

  • Pasta, Mauro; Wessells, Colin D.; Huggins, Robert A.
  • Nature Communications, Vol. 3, Issue 1, Article No. 1149
  • DOI: 10.1038/ncomms2139

Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
journal, April 2016


Copper hexacyanoferrate battery electrodes with long cycle life and high power
journal, November 2011

  • Wessells, Colin D.; Huggins, Robert A.; Cui, Yi
  • Nature Communications, Vol. 2, Article No. 550
  • DOI: 10.1038/ncomms1563

Collapse of LiNi 1– xy Co x Mn y O 2 Lattice at Deep Charge Irrespective of Nickel Content in Lithium-Ion Batteries
journal, March 2019

  • Li, Wangda; Asl, Hooman Yaghoobnejad; Xie, Qiang
  • Journal of the American Chemical Society, Vol. 141, Issue 13
  • DOI: 10.1021/jacs.8b13798

Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers
journal, February 2013

  • Kong, Desheng; Wang, Haotian; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1341-1347
  • DOI: 10.1021/nl400258t

Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

Role of Structural H 2 O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V 2 O 5
journal, March 2016

  • Sai Gautam, Gopalakrishnan; Canepa, Pieremanuele; Richards, William Davidson
  • Nano Letters, Vol. 16, Issue 4
  • DOI: 10.1021/acs.nanolett.5b05273

Orthorhombic Na[sub x]MnO[sub 2] as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries
journal, January 1994

  • Doeff, Marca M.
  • Journal of The Electrochemical Society, Vol. 141, Issue 11
  • DOI: 10.1149/1.2059323

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Aqueous Rechargeable Li and Na Ion Batteries
journal, September 2014

  • Kim, Haegyeom; Hong, Jihyun; Park, Kyu-Young
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500232y

Preparative Parameters and Framework Dopant Effects in the Synthesis of Layer-Structure Birnessite by Air Oxidation
journal, May 2002

  • Cai, Jun; Liu, Jia; Suib, Steven L.
  • Chemistry of Materials, Vol. 14, Issue 5
  • DOI: 10.1021/cm010771h

Impedance, power, energy, and pulse performance characteristics of small commercial Li-ion cells
journal, October 1999


Layered birnessite-type MnO 2 with surface pits for enhanced catalytic formaldehyde oxidation activity
journal, January 2017

  • Wang, Jinlong; Zhang, Gaoke; Zhang, Pengyi
  • Journal of Materials Chemistry A, Vol. 5, Issue 12
  • DOI: 10.1039/C6TA09793F

Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
journal, July 2017

  • Radin, Maxwell D.; Hy, Sunny; Sina, Mahsa
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201602888

Electrochemical Performance of MnO 2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors
journal, July 2009

  • Qu, Qunting; Zhang, Peng; Wang, Bin
  • The Journal of Physical Chemistry C, Vol. 113, Issue 31
  • DOI: 10.1021/jp8113094

Freestanding Three-Dimensional Graphene/MnO 2 Composite Networks As Ultralight and Flexible Supercapacitor Electrodes
journal, December 2012

  • He, Yongmin; Chen, Wanjun; Li, Xiaodong
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn304833s

An aqueous rechargeable sodium ion battery based on a NaMnO 2 –NaTi 2 (PO 4 ) 3 hybrid system for stationary energy storage
journal, January 2015

  • Hou, Zhiguo; Li, Xiaona; Liang, Jianwen
  • Journal of Materials Chemistry A, Vol. 3, Issue 4
  • DOI: 10.1039/C4TA06018K

Synthesis and electrochemical characterization of M2Mn3O8 (M=Ca, Cu) compounds and derivatives
journal, March 2006


Highly porous honeycomb manganese oxide@carbon fibers core–shell nanocables for flexible supercapacitors
journal, April 2015


A Spinel-Integrated P2-Type Layered Composite: High-Rate Cathode for Sodium-Ion Batteries
journal, January 2016

  • Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0041605jes

Removal of Interstitial H 2 O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery
journal, February 2015

  • Song, Jie; Wang, Long; Lu, Yuhao
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja512383b

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Electrochemical intercalation and deintercalation of NaxMnO2 bronzes
journal, May 1985


Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer
journal, August 2017


Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Layered oxides as positive electrode materials for Na-ion batteries
journal, May 2014

  • Kubota, Kei; Yabuuchi, Naoaki; Yoshida, Hiroaki
  • MRS Bulletin, Vol. 39, Issue 5
  • DOI: 10.1557/mrs.2014.85

Ultrathin Two-Dimensional MnO 2 /Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors
journal, April 2013

  • Peng, Lele; Peng, Xu; Liu, Borui
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400600x

A Superior Low-Cost Cathode for a Na-Ion Battery
journal, January 2013

  • Wang, Long; Lu, Yuhao; Liu, Jue
  • Angewandte Chemie International Edition, Vol. 52, Issue 7
  • DOI: 10.1002/anie.201206854

Structural classification and properties of the layered oxides
journal, January 1980


Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries
journal, September 2016