skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superconductivity at 250 K in lanthanum hydride under high pressures

Abstract

With the discovery of superconductivity at 203 kelvin in H3S, attention returned to conventional superconductors with properties that can be described by the Bardeen–Cooper–Schrieffer and the Migdal–Eliashberg theories. Although these theories predict the possibility of room-temperature superconductivity in metals that have certain favourable properties—such as lattice vibrations at high frequencies—they are not sufficient to guide the design or predict the properties of new superconducting materials. First-principles calculations based on density functional theory have enabled such predictions, and have suggested a new family of superconducting hydrides that possess a clathrate-like structure in which the host atom (calcium, yttrium, lanthanum) is at the centre of a cage formed by hydrogen atoms. For LaH10 and YH10, the onset of superconductivity is predicted to occur at critical temperatures between 240 and 320 kelvin at megabar pressures. In this work, we report superconductivity with a critical temperature of around 250 kelvin within the Fm$$\bar{3}$$m structure of LaH10 at a pressure of about 170 gigapascals. This is, to our knowledge, the highest critical temperature that has been confirmed so far in a superconducting material. Superconductivity was evidenced by the observation of zero resistance, an isotope effect, and a decrease in critical temperature under an external magnetic field, which suggested an upper critical magnetic field of about 136 tesla at zero temperature. Lastly, the increase of around 50 kelvin compared with the previous highest critical temperature is an encouraging step towards the goal of achieving room-temperature superconductivity in the near future.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [2];  [3];  [2];  [4];  [4];  [1];  [5];  [1]
  1. Max-Planck Institut für Chemie, Mainz (Germany)
  2. Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Univ. of Chicago, IL (United States)
  5. Inst. of Physical Chemistry PAS, Warsaw (Poland)
Publication Date:
Research Org.:
Florida State Univ., Tallahassee, FL (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1594454
Alternate Identifier(s):
OSTI ID: 1770106
Report Number(s):
LA-UR-19-21534
Journal ID: ISSN 0028-0836; TRN: US2101806
Grant/Contract Number:  
SC0002613; FG02-94ER14466; AC02-06CH11357; DMR-1644779; EAR-1634415; 89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 569; Journal Issue: 7757; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE; High Magnetic Field Science

Citation Formats

Drozdov, A. P., Kong, P. P., Minkov, V. S., Besedin, S. P., Kuzovnikov, M. A., Mozaffari, S., Balicas, L., Balakirev, F. F., Graf, D. E., Prakapenka, V. B., Greenberg, E., Knyazev, D. A., Tkacz, M., and Eremets, M. I. Superconductivity at 250 K in lanthanum hydride under high pressures. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1201-8.
Drozdov, A. P., Kong, P. P., Minkov, V. S., Besedin, S. P., Kuzovnikov, M. A., Mozaffari, S., Balicas, L., Balakirev, F. F., Graf, D. E., Prakapenka, V. B., Greenberg, E., Knyazev, D. A., Tkacz, M., & Eremets, M. I. Superconductivity at 250 K in lanthanum hydride under high pressures. United States. doi:https://doi.org/10.1038/s41586-019-1201-8
Drozdov, A. P., Kong, P. P., Minkov, V. S., Besedin, S. P., Kuzovnikov, M. A., Mozaffari, S., Balicas, L., Balakirev, F. F., Graf, D. E., Prakapenka, V. B., Greenberg, E., Knyazev, D. A., Tkacz, M., and Eremets, M. I. Wed . "Superconductivity at 250 K in lanthanum hydride under high pressures". United States. doi:https://doi.org/10.1038/s41586-019-1201-8. https://www.osti.gov/servlets/purl/1594454.
@article{osti_1594454,
title = {Superconductivity at 250 K in lanthanum hydride under high pressures},
author = {Drozdov, A. P. and Kong, P. P. and Minkov, V. S. and Besedin, S. P. and Kuzovnikov, M. A. and Mozaffari, S. and Balicas, L. and Balakirev, F. F. and Graf, D. E. and Prakapenka, V. B. and Greenberg, E. and Knyazev, D. A. and Tkacz, M. and Eremets, M. I.},
abstractNote = {With the discovery of superconductivity at 203 kelvin in H3S, attention returned to conventional superconductors with properties that can be described by the Bardeen–Cooper–Schrieffer and the Migdal–Eliashberg theories. Although these theories predict the possibility of room-temperature superconductivity in metals that have certain favourable properties—such as lattice vibrations at high frequencies—they are not sufficient to guide the design or predict the properties of new superconducting materials. First-principles calculations based on density functional theory have enabled such predictions, and have suggested a new family of superconducting hydrides that possess a clathrate-like structure in which the host atom (calcium, yttrium, lanthanum) is at the centre of a cage formed by hydrogen atoms. For LaH10 and YH10, the onset of superconductivity is predicted to occur at critical temperatures between 240 and 320 kelvin at megabar pressures. In this work, we report superconductivity with a critical temperature of around 250 kelvin within the Fm$\bar{3}$m structure of LaH10 at a pressure of about 170 gigapascals. This is, to our knowledge, the highest critical temperature that has been confirmed so far in a superconducting material. Superconductivity was evidenced by the observation of zero resistance, an isotope effect, and a decrease in critical temperature under an external magnetic field, which suggested an upper critical magnetic field of about 136 tesla at zero temperature. Lastly, the increase of around 50 kelvin compared with the previous highest critical temperature is an encouraging step towards the goal of achieving room-temperature superconductivity in the near future.},
doi = {10.1038/s41586-019-1201-8},
journal = {Nature (London)},
number = 7757,
volume = 569,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 142 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals
journal, July 2005


Phase stability of some rare earth trihydrides under high pressure
journal, December 2017


Dynamics and superconductivity in compressed lanthanum superhydride
journal, September 2018


Pressure-stabilized superconductive yttrium hydrides
journal, May 2015

  • Li, Yinwei; Hao, Jian; Liu, Hanyu
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09948

Ab initio random structure searching
journal, January 2011


Crystal structure prediction via particle-swarm optimization
journal, September 2010


Synthesis and Stability of Lanthanum Superhydrides
journal, December 2017

  • Geballe, Zachary M.; Liu, Hanyu; Mishra, Ajay K.
  • Angewandte Chemie International Edition, Vol. 57, Issue 3
  • DOI: 10.1002/anie.201709970

Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features
journal, April 2018

  • Sanna, Antonio; Flores-Livas, José A.; Davydov, Arkadiy
  • Journal of the Physical Society of Japan, Vol. 87, Issue 4
  • DOI: 10.7566/JPSJ.87.041012

Hydrogen Dominant Metallic Alloys: High Temperature Superconductors?
journal, May 2004


Superconductive sodalite-like clathrate calcium hydride at high pressures
journal, April 2012

  • Wang, H.; Tse, J. S.; Tanaka, K.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 17
  • DOI: 10.1073/pnas.1118168109

DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


Phase separation of lanthanum hydride under high pressure
journal, February 2011


Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity
journal, September 2017


Conductive dense hydrogen
journal, November 2011

  • Eremets, M. I.; Troyan, I. A.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3175

Microscopic mechanism of room-temperature superconductivity in compressed LaH 10
journal, April 2019


Transition temperature of strong-coupled superconductors reanalyzed
journal, August 1975


Superconductivity in sodalite-like yttrium hydride clathrates
journal, June 2019


The Systems Vanadium-Hydrogen and Vanadium-Deuterium
journal, January 1979


Colloquium : High pressure and road to room temperature superconductivity
journal, January 2018


EXPGUI , a graphical user interface for GSAS
journal, April 2001


Possible highT c superconductivity in the Ba?La?Cu?O system
journal, June 1986

  • Bednorz, J. G.; M�ller, K. A.
  • Zeitschrift f�r Physik B Condensed Matter, Vol. 64, Issue 2
  • DOI: 10.1007/BF01303701

Megabar high-pressure cells for Raman measurements
journal, January 2003

  • Eremets, M. I.
  • Journal of Raman Spectroscopy, Vol. 34, Issue 7-8
  • DOI: 10.1002/jrs.1044

Potential high- T c superconducting lanthanum and yttrium hydrides at high pressure
journal, June 2017

  • Liu, Hanyu; Naumov, Ivan I.; Hoffmann, Roald
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 27
  • DOI: 10.1073/pnas.1704505114

Superconductivity in modified semiconductors and the path to higher transition temperatures
journal, February 2015


Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

Bosonic Anomalies in Boron-Doped Polycrystalline Diamond
journal, December 2016


Discovery of High-Temperature Superconductivity ( T c = 55 K) in B-Doped Q-Carbon
journal, October 2016


Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures
journal, January 2019


Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system
journal, May 1993

  • Schilling, A.; Cantoni, M.; Guo, J. D.
  • Nature, Vol. 363, Issue 6424
  • DOI: 10.1038/363056a0

Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
journal, June 2006

  • Oganov, Artem R.; Glass, Colin W.
  • The Journal of Chemical Physics, Vol. 124, Issue 24
  • DOI: 10.1063/1.2210932

    Works referencing / citing this record:

    Physics of Superconducting Transition Temperatures
    journal, November 2019


    Fermi-Bose Mixtures and BCS-BEC Crossover in High-Tc Superconductors
    journal, June 2019


    Polyhydride CeH9 with an atomic-like hydrogen clathrate structure
    journal, August 2019


    Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies
    journal, January 2020

    • Li, Mei; Liu, Tianbiao; Wang, Yonggang
    • Matter and Radiation at Extremes, Vol. 5, Issue 1
    • DOI: 10.1063/1.5133653

    High-entropy alloy superconductors: Status, opportunities, and challenges
    journal, September 2019


    Measuring magnetic field texture in correlated electron systems under extreme conditions
    journal, December 2019


    Enhancing superconductivity in bulk β Bi 2 Pd by negative pressure induced by quantum electronic stress
    journal, September 2019


    Classifying hydrogen-rich superconductors
    journal, August 2019


    Phase diagrams and electronic properties of B-S and H-B-S systems under high pressure
    journal, October 2019


    Superconducting phase diagram of H3S under high magnetic fields
    journal, June 2019


    Superconductivity in sodalite-like yttrium hydride clathrates
    journal, June 2019


    A Critical Review of Machine Learning of Energy Materials
    journal, January 2020


    Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure
    journal, August 2019


    Spectroscopic signatures of phonons in high pressure superconducting hydrides
    journal, September 2019


    BCS-BEC crossover and superconductor-insulator transition in Hopf-linked Graphene layers: Hopfene
    journal, September 2019


    Inelastic neutron scattering evidence for anomalous H–H distances in metal hydrides
    journal, February 2020

    • Borgschulte, Andreas; Terreni, Jasmin; Billeter, Emanuel
    • Proceedings of the National Academy of Sciences, Vol. 117, Issue 8
    • DOI: 10.1073/pnas.1912900117

    Solubility of deuterium and hydrogen in fcc iron at high pressures and temperatures
    journal, November 2019


    Ab initio study of metallic aluminum hydrides at high pressures
    journal, November 2019


    Materials informatics based on evolutionary algorithms: Application to search for superconducting hydrogen compounds
    journal, November 2019


    Classifying Induced Superconductivity in Atomically Thin Dirac-Cone Materials
    journal, September 2019


    Synthesis of clathrate cerium superhydride CeH9 at 80-100 GPa with atomic hydrogen sublattice
    journal, October 2019

    • Salke, Nilesh P.; Davari Esfahani, M. Mahdi; Zhang, Youjun
    • Nature Communications, Vol. 10, Issue 1
    • DOI: 10.1038/s41467-019-12326-y

    Ternary superconducting cophosphorus hydrides stabilized via lithium
    journal, October 2019


    Superconductivity of LaH 10 and LaH 16 polyhydrides
    journal, January 2020


    Functional form of the superconducting critical temperature from machine learning
    journal, November 2019


    Metallization and superconductivity in methane doped by beryllium at low pressure
    journal, January 2020

    • Lv, Hai-Yan; Zhang, Si-Yuan; Li, Meng-Hu
    • Physical Chemistry Chemical Physics, Vol. 22, Issue 3
    • DOI: 10.1039/c9cp06008a

    Classifying superconductivity in ThH-ThD superhydrides/superdeuterides
    journal, January 2020


    Pressure dependence of the superconducting transition temperature of compressed LaH 10
    journal, August 2019


    Predicting novel superconducting hydrides using machine learning approaches
    journal, April 2020


    Classifying Induced Superconductivity in Atomically Thin Dirac-Cone Materials
    journal, September 2019


    Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers
    journal, December 2019


    Pressure effects on the electronic structure and superconductivity of ( TaNb ) 0.67 ( HfZrTi ) 0.33 high entropy alloy
    journal, November 2019


    Special issue on novel superconducting and magnetic materials
    journal, October 2019

    • Bernardini, Fabio; Boeri, Lilia; Floris, Andrea
    • Journal of Physics: Condensed Matter, Vol. 32, Issue 4
    • DOI: 10.1088/1361-648x/ab4cbe

    First-principles study of crystal structures and superconductivity of ternary YSH 6 and LaSH 6 at high pressures
    journal, November 2019


    Compressed hydrides as metallic hydrogen superconductors
    journal, November 2019