skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on September 16, 2020

Title: Towards understanding the doping mechanism of organic semiconductors by Lewis acids

Abstract

Precise doping of organic semiconductors allows control over the conductivity of these materials, an essential parameter in electronic applications. Although Lewis acids have recently shown promise as dopants for solution-processed polymers, their doping mechanism is not yet fully understood. In this study, we found that B(C 6F 5) 3 is a superior dopant to the other Lewis acids investigated (BF 3, BBr 3 and AlCl 3). Experiments indicate that Lewis acid–base adduct formation with polymers inhibits the doping process. Electron–nuclear double-resonance and nuclear magnetic resonance experiments, together with density functional theory, show that p-type doping occurs by generation of a water–Lewis acid complex with substantial Brønsted acidity, followed by protonation of the polymer backbone and electron transfer from a neutral chain segment to a positively charged, protonated one. Here, this study provides insight into a potential path for protonic acid doping and shows how trace levels of water can transform Lewis acids into powerful Brønsted acids.

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [2];  [1];  [1];  [3];  [3];  [4];  [1]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of California, Santa Barbara, CA (United States). Center for Polymers and Organic Solids
  2. Donghua Univ., Shanghai (China). Center for Advanced Low-Dimension Materials
  3. Humboldt Univ. of Berlin (Germany)
  4. Univ. of Kentucky, Lexington, KY (United States)
Publication Date:
Research Org.:
Univ. of California, Santa Barbara, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Science Foundation (NSF); German Research Foundation (DFG)
OSTI Identifier:
1593929
Grant/Contract Number:  
SC0017659; SC0018208; AC02-05CH11231; 1650114
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 18; Journal Issue: 12; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Yurash, Brett, Cao, David Xi, Brus, Viktor V., Leifert, Dirk, Wang, Ming, Dixon, Alana, Seifrid, Martin, Mansour, Ahmed, Lungwitz, Dominique, Liu, Tuo, Santiago, Peter J., Gracham, Kenneth, Koch, Norbert, Bazan, Guillermo C., and Nguyen, Thuc-Quyen. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. United States: N. p., 2019. Web. doi:10.1038/s41563-019-0479-0.
Yurash, Brett, Cao, David Xi, Brus, Viktor V., Leifert, Dirk, Wang, Ming, Dixon, Alana, Seifrid, Martin, Mansour, Ahmed, Lungwitz, Dominique, Liu, Tuo, Santiago, Peter J., Gracham, Kenneth, Koch, Norbert, Bazan, Guillermo C., & Nguyen, Thuc-Quyen. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. United States. doi:10.1038/s41563-019-0479-0.
Yurash, Brett, Cao, David Xi, Brus, Viktor V., Leifert, Dirk, Wang, Ming, Dixon, Alana, Seifrid, Martin, Mansour, Ahmed, Lungwitz, Dominique, Liu, Tuo, Santiago, Peter J., Gracham, Kenneth, Koch, Norbert, Bazan, Guillermo C., and Nguyen, Thuc-Quyen. Mon . "Towards understanding the doping mechanism of organic semiconductors by Lewis acids". United States. doi:10.1038/s41563-019-0479-0.
@article{osti_1593929,
title = {Towards understanding the doping mechanism of organic semiconductors by Lewis acids},
author = {Yurash, Brett and Cao, David Xi and Brus, Viktor V. and Leifert, Dirk and Wang, Ming and Dixon, Alana and Seifrid, Martin and Mansour, Ahmed and Lungwitz, Dominique and Liu, Tuo and Santiago, Peter J. and Gracham, Kenneth and Koch, Norbert and Bazan, Guillermo C. and Nguyen, Thuc-Quyen},
abstractNote = {Precise doping of organic semiconductors allows control over the conductivity of these materials, an essential parameter in electronic applications. Although Lewis acids have recently shown promise as dopants for solution-processed polymers, their doping mechanism is not yet fully understood. In this study, we found that B(C6F5)3 is a superior dopant to the other Lewis acids investigated (BF3, BBr3 and AlCl3). Experiments indicate that Lewis acid–base adduct formation with polymers inhibits the doping process. Electron–nuclear double-resonance and nuclear magnetic resonance experiments, together with density functional theory, show that p-type doping occurs by generation of a water–Lewis acid complex with substantial Brønsted acidity, followed by protonation of the polymer backbone and electron transfer from a neutral chain segment to a positively charged, protonated one. Here, this study provides insight into a potential path for protonic acid doping and shows how trace levels of water can transform Lewis acids into powerful Brønsted acids.},
doi = {10.1038/s41563-019-0479-0},
journal = {Nature Materials},
number = 12,
volume = 18,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 16, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Increased power factors of organic–inorganic nanocomposite thermoelectric materials and the role of energy filtering
journal, January 2017

  • Liang, Zhiming; Boland, Mathias J.; Butrouna, Kamal
  • Journal of Materials Chemistry A, Vol. 5, Issue 30
  • DOI: 10.1039/C7TA02307C

Exploring the fate of the tris(pentafluorophenyl)borane radical anion in weakly coordinating solvents
journal, January 2013

  • Lawrence, Elliot J.; Oganesyan, Vasily S.; Wildgoose, Gregory G.
  • Dalton Trans., Vol. 42, Issue 3
  • DOI: 10.1039/C2DT31622F

Self-doped conducting polymers
journal, June 1987


1 H and 19 F NMR Investigation of the Reaction of B(C 6 F 5 ) 3 with Water in Toluene Solution
journal, November 2001

  • Beringhelli, Tiziana; Maggioni, Daniela; D'Alfonso, Giuseppe
  • Organometallics, Vol. 20, Issue 23
  • DOI: 10.1021/om010610n

p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane
journal, September 2016

  • Pingel, Patrick; Arvind, Malavika; Kölln, Lisa
  • Advanced Electronic Materials, Vol. 2, Issue 10
  • DOI: 10.1002/aelm.201600204

The heat of hydrolysis of boron tribromide
journal, January 1955

  • Skinner, H. A.; Smith, N. B.
  • Transactions of the Faraday Society, Vol. 51
  • DOI: 10.1039/tf9555100019

Electrical Conductivity in Doped Polyacetylene
journal, October 1977


Protonic acids: Generally applicable dopants for conducting polymers
journal, April 1989


Controlling Electrical Properties of Conjugated Polymers via a Solution-Based p-Type Doping
journal, September 2008

  • Yim, Keng-Hoong; Whiting, Gregory L.; Murphy, Craig E.
  • Advanced Materials, Vol. 20, Issue 17, p. 3319-3324
  • DOI: 10.1002/adma.200800735

Facile Doping of Anionic Narrow-Band-Gap Conjugated Polyelectrolytes During Dialysis
journal, November 2013

  • Mai, Cheng-Kang; Zhou, Huiqiong; Zhang, Yuan
  • Angewandte Chemie International Edition, Vol. 52, Issue 49
  • DOI: 10.1002/anie.201307667

The effect of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane charge transfer dopants on the conformation and aggregation of poly(3-hexylthiophene)
journal, January 2013

  • Gao, Jian; Roehling, John D.; Li, Yongle
  • Journal of Materials Chemistry C, Vol. 1, Issue 36
  • DOI: 10.1039/c3tc31047g

Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules
journal, February 2016


Work function control of hole-selective polymer/ITO anode contacts: an electrochemical doping study
journal, January 2010

  • Ratcliff, Erin L.; Lee, Paul A.; Armstrong, Neal R.
  • Journal of Materials Chemistry, Vol. 20, Issue 13
  • DOI: 10.1039/b923201j

Regioregular Pyridal[2,1,3]thiadiazole π-Conjugated Copolymers
journal, November 2011

  • Ying, Lei; Hsu, Ben B. Y.; Zhan, Hongmei
  • Journal of the American Chemical Society, Vol. 133, Issue 46
  • DOI: 10.1021/ja207543g

Enhanced Charge-Carrier Injection and Collection Via Lamination of Doped Polymer Layers p-Doped with a Solution-Processible Molybdenum Complex
journal, December 2013

  • Dai, An; Zhou, Yinhua; Shu, Andrew L.
  • Advanced Functional Materials, Vol. 24, Issue 15
  • DOI: 10.1002/adfm.201303232

Pentafluorophenylboranes: from obscurity to applications
journal, January 1997

  • Piers, Warren E.; Chivers, Tristram
  • Chemical Society Reviews, Vol. 26, Issue 5
  • DOI: 10.1039/cs9972600345

Generation and Characterization of the Tris(pentafluorophenyl)borane Radical Anion
journal, August 2001

  • Kwaan, Rebecca J.; Harlan, C. Jeff; Norton, Jack R.
  • Organometallics, Vol. 20, Issue 17
  • DOI: 10.1021/om010272q

Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology
journal, January 2016

  • Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.
  • J. Mater. Chem. C, Vol. 4, Issue 16
  • DOI: 10.1039/C5TC04207K

Lewis Acid Doping Induced Synergistic Effects on Electronic and Morphological Structure for Donor and Acceptor in Polymer Solar Cells
journal, March 2018


Organic metals and semiconductors: The chemistry of polyacetylene, (CH)x, and its derivatives
journal, March 1980


Introducing Solubility Control for Improved Organic P-Type Dopants
journal, August 2015


Unusual Doping of Donor–Acceptor-Type Conjugated Polymers Using Lewis Acids
journal, March 2014

  • Poverenov, Elena; Zamoshchik, Natalia; Patra, Asit
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja501024n

Complexes of tris(pentafluorophenyl)boron with nitrogen-containing compounds: Synthesis, reactivity and metallocene activation
journal, January 2006

  • Focante, Francesca; Mercandelli, Pierluigi; Sironi, Angelo
  • Coordination Chemistry Reviews, Vol. 250, Issue 1-2
  • DOI: 10.1016/j.ccr.2005.05.005

Studies of hydrolyzed aluminum chloride solutions. 1. Nature of aluminum species and composition of aqueous solutions
journal, October 1980

  • Bottero, J. Y.; Cases, J. M.; Fiessinger, F.
  • The Journal of Physical Chemistry, Vol. 84, Issue 22
  • DOI: 10.1021/j100459a021

Controllable Molecular Doping and Charge Transport in Solution-Processed Polymer Semiconducting Layers
journal, June 2009

  • Zhang, Yuan; de Boer, Bert; Blom, Paul W. M.
  • Advanced Functional Materials, Vol. 19, Issue 12, p. 1901-1905
  • DOI: 10.1002/adfm.200801761

A new aspect of cyclopentadithiophene based polymers: narrow band gap polymers upon protonation
journal, January 2015

  • Tang, Tao; Lin, Tingting; Wang, FuKe
  • Chemical Communications, Vol. 51, Issue 67
  • DOI: 10.1039/C5CC04028K

Equilibria in the System Boron Trifluoride—Water at 25°
journal, January 1951

  • Wamser, Christian A.
  • Journal of the American Chemical Society, Vol. 73, Issue 1
  • DOI: 10.1021/ja01145a134

Highly Efficient Organic Devices Based on Electrically Doped Transport Layers
journal, April 2007

  • Walzer, K.; Maennig, B.; Pfeiffer, M.
  • Chemical Reviews, Vol. 107, Issue 4
  • DOI: 10.1021/cr050156n

Color Tuning in Polymer Light-Emitting Diodes with Lewis Acids
journal, June 2012

  • Zalar, Peter; Henson, Zachary B.; Welch, Gregory C.
  • Angewandte Chemie, Vol. 124, Issue 30
  • DOI: 10.1002/ange.201202570

Lewis Acid–Base Chemistry of 7-Azaisoindigo-Based Organic Semiconductors
journal, July 2017

  • Randell, Nicholas M.; Fransishyn, Kyle M.; Kelly, Timothy L.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 29
  • DOI: 10.1021/acsami.7b06335

Pentafluoroaryl Transfer from Tris(pentafluorophenyl)boron Hydrate to Nickel. Synthesis and X-ray Crystal Structure of (PPh 2 CH 2 C(O)Ph)Ni(C 6 F 5 ) 2
journal, September 2000

  • Kalamarides, Heather A.; Iyer, Suri; Lipian, John
  • Organometallics, Vol. 19, Issue 19
  • DOI: 10.1021/om000606w

Overcoming Film Quality Issues for Conjugated Polymers Doped with F 4 TCNQ by Solution Sequential Processing: Hall Effect, Structural, and Optical Measurements
journal, November 2015

  • Scholes, D. Tyler; Hawks, Steven A.; Yee, Patrick Y.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 23
  • DOI: 10.1021/acs.jpclett.5b02332

Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer
journal, October 2013

  • Zalar, Peter; Kuik, Martijn; Henson, Zachary B.
  • Advanced Materials, Vol. 26, Issue 5
  • DOI: 10.1002/adma.201303357

Hole Mobility and Electron Injection Properties of D-A Conjugated Copolymers with Fluorinated Phenylene Acceptor Units
journal, January 2017

  • Wang, Ming; Ford, Michael J.; Lill, Alexander T.
  • Advanced Materials, Vol. 29, Issue 7
  • DOI: 10.1002/adma.201603830

Lewis acidity of tris(pentafluorophenyl)borane: crystal and molecular structure of B(C6F5)3·OPEt3
journal, October 2000

  • Beckett, Michael A.; Brassington, David S.; Coles, Simon J.
  • Inorganic Chemistry Communications, Vol. 3, Issue 10
  • DOI: 10.1016/S1387-7003(00)00129-5

Highly Conducting Water-Soluble Polythiophene Derivatives
journal, December 1997

  • Chayer, Martine; Faïd, Karim; Leclerc, Mario
  • Chemistry of Materials, Vol. 9, Issue 12
  • DOI: 10.1021/cm970238v

Lewis Acid Adducts of Narrow Band Gap Conjugated Polymers
journal, March 2011

  • Welch, Gregory C.; Bazan, Guillermo C.
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja110968m

Structure of a zirconoxyborane having a zirconium-fluorine-carbon bridge
journal, May 1993

  • Siedle, A. R.; Newmark, R. A.; Lamanna, W. M.
  • Organometallics, Vol. 12, Issue 5
  • DOI: 10.1021/om00029a002

Synthesis and Reactivity of (C 6 F 5 ) 3 B− N -Heterocycle Complexes. 1. Generation of Highly Acidic sp 3 Carbons in Pyrroles and Indoles
journal, July 2003

  • Guidotti, Simona; Camurati, Isabella; Focante, Francesca
  • The Journal of Organic Chemistry, Vol. 68, Issue 14
  • DOI: 10.1021/jo020647x

Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material
journal, August 1998

  • Blochwitz, J.; Pfeiffer, M.; Fritz, T.
  • Applied Physics Letters, Vol. 73, Issue 6
  • DOI: 10.1063/1.121982

Highly-efficient charge separation and polaron delocalization in polymer–fullerene bulk-heterojunctions: a comparative multi-frequency EPR and DFT study
journal, January 2013

  • Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 24
  • DOI: 10.1039/c3cp51477c

The reaction of hf with polyacetylene
journal, May 1982

  • McQuillan, B.; Street, G. B.; Clarke, T. C.
  • Journal of Electronic Materials, Vol. 11, Issue 3
  • DOI: 10.1007/BF02654684

Solution-processed conjugated polymer organic p-i-n light-emitting diodes with high built-in potential by solution- and solid-state doping
journal, November 2009

  • Sivaramakrishnan, Sankaran; Zhou, Mi; Kumar, Aravind C.
  • Applied Physics Letters, Vol. 95, Issue 21
  • DOI: 10.1063/1.3257979

Equilibria in the B(C6F5)3–H2O system: synthesis and crystal structures of H2O·B(C6F5)3 and the anions [HOB(C6F5)3]− and [(F5C6)3B(μ-OH)B(C6F5)3]−
journal, January 1998

  • Danopoulos, Andreas A.; Galsworthy, Jane R.; Green, Malcolm L. H.
  • Chemical Communications, Issue 22
  • DOI: 10.1039/a804918a

Band Gap Control in Conjugated Oligomers via Lewis Acids
journal, August 2009

  • Welch, Gregory C.; Coffin, Robert; Peet, Jeff
  • Journal of the American Chemical Society, Vol. 131, Issue 31, p. 10802-10803
  • DOI: 10.1021/ja902789w