skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kernel-based Gaussian process for anomaly detection in sparse gamma-ray data

Authors:
ORCiD logo; ; ORCiD logo;
Publication Date:
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1593507
Grant/Contract Number:  
NA0002576
Resource Type:
Published Article
Journal Name:
PLoS ONE
Additional Journal Information:
Journal Name: PLoS ONE Journal Volume: 15 Journal Issue: 1; Journal ID: ISSN 1932-6203
Publisher:
Public Library of Science (PLoS)
Country of Publication:
United States
Language:
English

Citation Formats

Romanchek, Gregory R., Liu, Zheng, Abbaszadeh, Shiva, and Lund, ed., Austin. Kernel-based Gaussian process for anomaly detection in sparse gamma-ray data. United States: N. p., 2020. Web. doi:10.1371/journal.pone.0228048.
Romanchek, Gregory R., Liu, Zheng, Abbaszadeh, Shiva, & Lund, ed., Austin. Kernel-based Gaussian process for anomaly detection in sparse gamma-ray data. United States. doi:10.1371/journal.pone.0228048.
Romanchek, Gregory R., Liu, Zheng, Abbaszadeh, Shiva, and Lund, ed., Austin. Thu . "Kernel-based Gaussian process for anomaly detection in sparse gamma-ray data". United States. doi:10.1371/journal.pone.0228048.
@article{osti_1593507,
title = {Kernel-based Gaussian process for anomaly detection in sparse gamma-ray data},
author = {Romanchek, Gregory R. and Liu, Zheng and Abbaszadeh, Shiva and Lund, ed., Austin},
abstractNote = {},
doi = {10.1371/journal.pone.0228048},
journal = {PLoS ONE},
number = 1,
volume = 15,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1371/journal.pone.0228048

Save / Share:

Works referenced in this record:

Statistical methods applied to gamma-ray spectroscopy algorithms in nuclear security missions
journal, October 2012


Discrimination of naturally occurring radioactive material in plastic scintillator material
journal, August 2004

  • Ely, J. H.; Kouzes, R. T.; Geelhood, B. D.
  • IEEE Transactions on Nuclear Science, Vol. 51, Issue 4
  • DOI: 10.1109/TNS.2004.832286

Kernel-Based Machine Learning for Background Estimation of NaI Low-Count Gamma-Ray Spectra
journal, June 2013

  • Alamaniotis, M.; Mattingly, J.; Tsoukalas, L. H.
  • IEEE Transactions on Nuclear Science, Vol. 60, Issue 3
  • DOI: 10.1109/TNS.2013.2260868

Information driven localisation of a radiological point source
journal, April 2008


Background estimation in experimental spectra
journal, February 2000


Naturally occurring radioactive materials and medical isotopes at border crossings
conference, January 2003

  • Kouzes, R. T.; Ely, J. H.; Geelhood, B. D.
  • 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)
  • DOI: 10.1109/NSSMIC.2003.1351967

Sparse On-Line Gaussian Processes
journal, March 2002


Background estimation for gamma-ray spectrometry
journal, September 1983

  • Burgess, Donald D.; Tervo, Richard J.
  • Nuclear Instruments and Methods in Physics Research, Vol. 214, Issue 2-3
  • DOI: 10.1016/0167-5087(83)90612-9

A comparison of simple algorithms for gamma-ray spectrometers in radioactive source search applications
journal, March 2008


An automated background estimation procedure for gamma ray spectra
journal, October 1983

  • Tervo, R. J.; Kennett, T. J.; Prestwich, W. V.
  • Nuclear Instruments and Methods in Physics Research, Vol. 216, Issue 1-2
  • DOI: 10.1016/0167-5087(83)90351-4

Poisson Statistical Methods for the Analysis of Low-Count Gamma Spectra
journal, June 2009

  • Kirkpatrick, John M.; Young, Brian M.
  • IEEE Transactions on Nuclear Science, Vol. 56, Issue 3
  • DOI: 10.1109/TNS.2009.2020516

Spatial-temporal modeling of background radiation using mobile sensor networks
journal, October 2018


Double Q-Learning for Radiation Source Detection
journal, February 2019


Automatic model selection for the optimization of SVM kernels
journal, October 2005