skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on July 25, 2020

Title: A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils

Abstract

Results from 22 airborne field campaigns, including more than 10 million high–resolution particle images collected in cirrus formed in situ and in convective anvils, are interpreted in terms of particle shapes and their potential impact on radiative transfer. Emphasis is placed on characterizing ice particle shapes in tropical maritime and midlatitude continental anvil cirrus, as well as in cirrus formed in situ in the upper troposphere, and subvisible cirrus in the upper tropical troposphere layer. There is a distinctive difference in cirrus ice particle shapes formed in situ compared to those in anvils that are generated in close proximity to convection. More than half the mass in cirrus formed in situ are rosette shapes (polycrystals and bullet rosettes). Cirrus formed from fresh convective anvils is mostly devoid of rosette–shaped particles. However, small frozen drops may experience regrowth downwind of an aged anvil in a regime with RH ice > ~120% and then grow into rosette shapes. Identifiable particle shapes in tropical maritime anvils that have not been impacted by continental influences typically contain mostly single plate–like and columnar crystals and aggregates. Midlatitude continental anvils contain single–rimed particles, more and larger aggregates with riming, and chains of small ice particles whenmore » in a highly electrified environment. Here, the particles in subvisible cirrus are < ~100 μm and quasi–spherical with some plates and rare trigonal shapes. Percentages of particle shapes and power laws relating mean particle area and mass to dimension are provided to improve parameterization of remote retrievals and numerical simulations.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [1]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5];  [6];  [7];  [8]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11];  [12]; ORCiD logo [13];  [14]; ORCiD logo [8]; ORCiD logo [15] more »; ORCiD logo [16]; ORCiD logo [17] « less
  1. Stratton Park Engineering Company, Inc., Boulder, CO (United States)
  2. NASA Ames Research Center, Moffett Field, CA (United States)
  3. Desert Research Inst., Reno, NV (United States); George Mason Univ., Fairfax, VA (United States)
  4. Univ. of Manchester (United Kingdom)
  5. York Univ., Toronto, ON (Canada)
  6. Met Office, Exeter (United Kingdom); Univ. of Hertfordshire, Hatfield (United Kingdom)
  7. Australian Bureau of Meteorology, Melbourne (Australia)
  8. National Center for Atmospheric Research, Boulder, CO (United States)
  9. Univ. of Oklahoma, Norman, OK (United States)
  10. Pusan National Univ., Busan (South Korea)
  11. Australian Bureau of Meteorology, Victoria (Australia)
  12. Desert Research Inst., Reno, NV (United States)
  13. Univ. at Albany, NY (United States)
  14. FM Global Research, Norwood, MA (United States)
  15. Environment Canada, Toronto, ON (Canada)
  16. Univ. of Colorado, Boulder, CO (United States)
  17. Forschungszentrum Jülich (Germany)
Publication Date:
Research Org.:
Stratton Park Engineering Company, Inc., Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23). Climate and Environmental Sciences Division; National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1593343
Alternate Identifier(s):
OSTI ID: 1561329
Grant/Contract Number:  
SC0017080; NNA15BA18P; NNX14AQ55G; SC0007035
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 124; Journal Issue: 17-18; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; cirrus; cloud microphysics; ice particle habit; in situ cirrus; anvil cirrus; radiative transfer

Citation Formats

Lawson, R. P., Woods, S., Jensen, E., Erfani, E., Gurganus, C., Gallagher, M., Connolly, P., Whiteway, J., Baran, A. J., May, P., Heymsfield, A., Schmitt, C. G., McFarquhar, G., Um, J., Protat, A., Bailey, M., Lance, S., Muehlbauer, A., Stith, J., Korolev, A., Toon, O. B., and Krämer, M. A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils. United States: N. p., 2019. Web. doi:10.1029/2018JD030122.
Lawson, R. P., Woods, S., Jensen, E., Erfani, E., Gurganus, C., Gallagher, M., Connolly, P., Whiteway, J., Baran, A. J., May, P., Heymsfield, A., Schmitt, C. G., McFarquhar, G., Um, J., Protat, A., Bailey, M., Lance, S., Muehlbauer, A., Stith, J., Korolev, A., Toon, O. B., & Krämer, M. A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils. United States. doi:10.1029/2018JD030122.
Lawson, R. P., Woods, S., Jensen, E., Erfani, E., Gurganus, C., Gallagher, M., Connolly, P., Whiteway, J., Baran, A. J., May, P., Heymsfield, A., Schmitt, C. G., McFarquhar, G., Um, J., Protat, A., Bailey, M., Lance, S., Muehlbauer, A., Stith, J., Korolev, A., Toon, O. B., and Krämer, M. Thu . "A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils". United States. doi:10.1029/2018JD030122.
@article{osti_1593343,
title = {A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils},
author = {Lawson, R. P. and Woods, S. and Jensen, E. and Erfani, E. and Gurganus, C. and Gallagher, M. and Connolly, P. and Whiteway, J. and Baran, A. J. and May, P. and Heymsfield, A. and Schmitt, C. G. and McFarquhar, G. and Um, J. and Protat, A. and Bailey, M. and Lance, S. and Muehlbauer, A. and Stith, J. and Korolev, A. and Toon, O. B. and Krämer, M.},
abstractNote = {Results from 22 airborne field campaigns, including more than 10 million high–resolution particle images collected in cirrus formed in situ and in convective anvils, are interpreted in terms of particle shapes and their potential impact on radiative transfer. Emphasis is placed on characterizing ice particle shapes in tropical maritime and midlatitude continental anvil cirrus, as well as in cirrus formed in situ in the upper troposphere, and subvisible cirrus in the upper tropical troposphere layer. There is a distinctive difference in cirrus ice particle shapes formed in situ compared to those in anvils that are generated in close proximity to convection. More than half the mass in cirrus formed in situ are rosette shapes (polycrystals and bullet rosettes). Cirrus formed from fresh convective anvils is mostly devoid of rosette–shaped particles. However, small frozen drops may experience regrowth downwind of an aged anvil in a regime with RHice > ~120% and then grow into rosette shapes. Identifiable particle shapes in tropical maritime anvils that have not been impacted by continental influences typically contain mostly single plate–like and columnar crystals and aggregates. Midlatitude continental anvils contain single–rimed particles, more and larger aggregates with riming, and chains of small ice particles when in a highly electrified environment. Here, the particles in subvisible cirrus are < ~100 μm and quasi–spherical with some plates and rare trigonal shapes. Percentages of particle shapes and power laws relating mean particle area and mass to dimension are provided to improve parameterization of remote retrievals and numerical simulations.},
doi = {10.1029/2018JD030122},
journal = {Journal of Geophysical Research: Atmospheres},
number = 17-18,
volume = 124,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 25, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Microphysical and Optical Properties of Atmospheric Ice Crystals at South Pole Station
journal, November 2006

  • Lawson, R. Paul; Baker, Brad A.; Zmarzly, Patrick
  • Journal of Applied Meteorology and Climatology, Vol. 45, Issue 11
  • DOI: 10.1175/JAM2421.1

On the importance of small ice crystals in tropical anvil cirrus
journal, January 2009

  • Jensen, E. J.; Lawson, P.; Baker, B.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 15
  • DOI: 10.5194/acp-9-5519-2009

Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates of ice water content, volume extinction coefficient and the total solar optical depth
journal, September 2009

  • Baran, Anthony J.; Connolly, P. J.; Lee, C.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 110, Issue 14-16
  • DOI: 10.1016/j.jqsrt.2009.02.021

Quantification of the Effects of Shattering on Airborne Ice Particle Measurements
journal, November 2013

  • Korolev, A. V.; Emery, E. F.; Strapp, J. W.
  • Journal of Atmospheric and Oceanic Technology, Vol. 30, Issue 11
  • DOI: 10.1175/JTECH-D-13-00115.1

A microphysics guide to cirrus clouds – Part 1: Cirrus types
journal, January 2016

  • Krämer, Martina; Rolf, Christian; Luebke, Anna
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 5
  • DOI: 10.5194/acp-16-3463-2016

A New Parameterization of Single Scattering Solar Radiative Properties for Tropical Anvils Using Observed Ice Crystal Size and Shape Distributions
journal, August 2002


The Ability of the Small Ice Detector (SID-2) to Characterize Cloud Particle and Aerosol Morphologies Obtained during Flights of the FAAM BAe-146 Research Aircraft
journal, February 2010

  • Cotton, Richard; Osborne, S.; Ulanowski, Z.
  • Journal of Atmospheric and Oceanic Technology, Vol. 27, Issue 2
  • DOI: 10.1175/2009JTECHA1282.1

Dimensions and aspect ratios of natural ice crystals
journal, January 2015

  • Um, J.; McFarquhar, G. M.; Hong, Y. P.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 7
  • DOI: 10.5194/acp-15-3933-2015

The Nevzorov Airborne Hot-Wire LWC–TWC Probe: Principle of Operation and Performance Characteristics
journal, December 1998


Improved Measurements of the Ice Water Content in Cirrus Using a Total-Water Probe
journal, April 1995


Ice Particles Observed in a Cirriform Cloud at −83°C and Implications for Polar Stratospheric Clouds
journal, April 1986


Comparison of methods to determine Tropical Tropopause Layer cirrus formation mechanisms: TTLC FORMATION
journal, March 2012

  • Riihimaki, Laura D.; McFarlane, Sally A.; Liang, Calvin
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D6
  • DOI: 10.1029/2011JD016832

Deep convective clouds with sustained supercooled liquid water down to -37.5 °C
journal, May 2000

  • Rosenfeld, Daniel; Woodley, William L.
  • Nature, Vol. 405, Issue 6785
  • DOI: 10.1038/35013030

A self-consistent scattering model for cirrus. II: The high and low frequencies: Self-consistent Scattering Model for Cirrus: Part II
journal, August 2013

  • Baran, Anthony J.; Cotton, Richard; Furtado, Kalli
  • Quarterly Journal of the Royal Meteorological Society, Vol. 140, Issue 680
  • DOI: 10.1002/qj.2193

Radiative effect of cirrus with different optical properties over the tropics in MODIS and CERES observations
journal, January 2006

  • Choi, Yong-Sang; Ho, Chang-Hoi
  • Geophysical Research Letters, Vol. 33, Issue 21
  • DOI: 10.1029/2006GL027403

Impact of Ice Cloud Microphysics on Satellite Cloud Retrievals and Broadband Flux Radiative Transfer Model Calculations
journal, March 2018


Water activity as the determinant for homogeneous ice nucleation in aqueous solutions
journal, August 2000

  • Koop, Thomas; Luo, Beiping; Tsias, Athanasios
  • Nature, Vol. 406, Issue 6796
  • DOI: 10.1038/35020537

Dependence of the single-scattering properties of small ice crystals on idealized shape models
journal, January 2011


Observations and modelling of microphysical variability, aggregation and sedimentation in tropical anvil cirrus outflow regions
journal, January 2012

  • Gallagher, M. W.; Connolly, P. J.; Crawford, I.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 14
  • DOI: 10.5194/acp-12-6609-2012

In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part I: Wave Clouds
journal, December 2006

  • Baker, Brad A.; Lawson, R. Paul
  • Journal of the Atmospheric Sciences, Vol. 63, Issue 12
  • DOI: 10.1175/JAS3802.1

Aerosol and thermodynamic effects on tropical cloud systems during TWPICE and ACTIVE
journal, January 2009

  • May, P. T.; Allen, G.; Vaughan, G.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 1
  • DOI: 10.5194/acp-9-15-2009

Anatomy of cirrus clouds: Results from the Emerald airborne campaigns
journal, January 2004


Open-path airborne tunable diode laser hygrometer
conference, September 2002

  • Diskin, Glenn S.; Podolske, James R.; Sachse, Glen W.
  • International Symposium on Optical Science and Technology, SPIE Proceedings
  • DOI: 10.1117/12.453736

The Dimensional Characteristics of Ice Crystal Aggregates from Fractal Geometry
journal, May 2010

  • Schmitt, C. G.; Heymsfield, A. J.
  • Journal of the Atmospheric Sciences, Vol. 67, Issue 5
  • DOI: 10.1175/2009JAS3187.1

Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 μ m
journal, January 2013

  • Yang, Ping; Bi, Lei; Baum, Bryan A.
  • Journal of the Atmospheric Sciences, Vol. 70, Issue 1
  • DOI: 10.1175/JAS-D-12-039.1

The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations
journal, October 2001


Distributions of ice supersaturation and ice crystals from airborne observations in relation to upper tropospheric dynamical boundaries: ICE SUPERSATURATION DYNAMICAL CONDITIONS
journal, May 2015

  • Diao, Minghui; Jensen, Jorgen B.; Pan, Laura L.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 10
  • DOI: 10.1002/2015JD023139

Tropical cirrus and water vapor: an effective Earth infrared iris feedback?
journal, January 2002

  • Fu, Q.; Baker, M.; Hartmann, D. L.
  • Atmospheric Chemistry and Physics, Vol. 2, Issue 1
  • DOI: 10.5194/acp-2-31-2002

Fall speeds and masses of solid precipitation particles
journal, May 1974

  • Locatelli, John D.; Hobbs, Peter V.
  • Journal of Geophysical Research, Vol. 79, Issue 15
  • DOI: 10.1029/JC079i015p02185

Graupel and Hail Terminal Velocities: Does a “Supercritical” Reynolds Number Apply?
journal, September 2014

  • Heymsfield, Andrew; Wright, Robert
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 9
  • DOI: 10.1175/JAS-D-14-0034.1

Aircraft observations of the influence of electric fields on the aggregation of ice crystals
journal, April 2005

  • Connolly, P. J.; Saunders, C. P. R.; Gallagher, M. W.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 608
  • DOI: 10.1256/qj.03.217

The Life Cycles of Ice Crystals Detrained From the Tops of Deep Convection: ANVIL ICE LIFECYCLE
journal, September 2018

  • Jensen, Eric J.; van den Heever, Susan C.; Grant, Leah D.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 17
  • DOI: 10.1029/2018JD028832

A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field Studies
journal, September 2009

  • Bailey, Matthew P.; Hallett, John
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 9
  • DOI: 10.1175/2009JAS2883.1

Laboratory and Flight Tests of 2D Imaging Probes: Toward a Better Understanding of Instrument Performance and the Impact on Archived Data
journal, July 2018

  • Gurganus, Colin; Lawson, Paul
  • Journal of Atmospheric and Oceanic Technology, Vol. 35, Issue 7
  • DOI: 10.1175/JTECH-D-17-0202.1

Effects of ice particles shattering on the 2D-S probe
journal, January 2011


Ice Crystal Linear Growth Rates from −20° to −70°C: Confirmation from Wave Cloud Studies
journal, January 2012

  • Bailey, Matthew; Hallett, John
  • Journal of the Atmospheric Sciences, Vol. 69, Issue 1
  • DOI: 10.1175/JAS-D-11-035.1

Formation of large (≃100 μm) ice crystals near the tropical tropopause
journal, January 2008

  • Jensen, E. J.; Pfister, L.; Bui, T. V.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 6
  • DOI: 10.5194/acp-8-1621-2008

Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems: CONVECTIVE CORE ANVIL CLOUD RADIATION
journal, December 2011

  • Feng, Zhe; Dong, Xiquan; Xi, Baike
  • Journal of Geophysical Research: Atmospheres, Vol. 116, Issue D23
  • DOI: 10.1029/2011JD016451

Single-Scattering Properties of Aggregates of Bullet Rosettes in Cirrus
journal, June 2007

  • Um, Junshik; McFarquhar, Greg M.
  • Journal of Applied Meteorology and Climatology, Vol. 46, Issue 6
  • DOI: 10.1175/JAM2501.1

Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystals
journal, January 2011

  • Baran, Anthony J.; Connolly, Paul J.; Heymsfield, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 654
  • DOI: 10.1002/qj.731

Aggregation and Scaling of Ice Crystal Size Distributions
journal, February 2003


Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA
journal, January 2010

  • Lawson, R. Paul; Jensen, Eric; Mitchell, David L.
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD013017

CALIPSO (IIR–CALIOP) retrievals of cirrus cloud ice-particle concentrations
journal, January 2018

  • Mitchell, David L.; Garnier, Anne; Pelon, Jacques
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 23
  • DOI: 10.5194/acp-18-17325-2018

High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus: WAVES AND ICE NUCLEATION
journal, June 2016

  • Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard
  • Geophysical Research Letters, Vol. 43, Issue 12
  • DOI: 10.1002/2016GL069426

Modelling of cirrus clouds – Part 1b: Structuring cirrus clouds by dynamics
journal, January 2009

  • Spichtinger, P.; Gierens, K. M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 2
  • DOI: 10.5194/acp-9-707-2009

Microphysical Properties of Tropical Tropopause Layer Cirrus
journal, June 2018

  • Woods, Sarah; Lawson, R. Paul; Jensen, Eric
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 11
  • DOI: 10.1029/2017JD028068

Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations
journal, January 2008

  • Mitchell, David L.; Rasch, Philip; Ivanova, Dorothea
  • Geophysical Research Letters, Vol. 35, Issue 9
  • DOI: 10.1029/2008GL033552

The Optical Array: An Alternative to Scattering or Extinction for Airborne Particle Size Determination
journal, February 1970


Microphysical Characteristics of Tropical Updrafts in Clean Conditions
journal, May 2004

  • Stith, Jeffrey L.; Haggerty, Julie A.; Heymsfield, Andrew
  • Journal of Applied Meteorology, Vol. 43, Issue 5
  • DOI: 10.1175/2104.1

An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE
journal, July 2001

  • Lawson, R. Paul; Baker, Brad A.; Schmitt, Carl G.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D14
  • DOI: 10.1029/2000JD900789

Parameterization of ice fall speeds in midlatitude cirrus: Results from SPartICus: Parameterization of Ice Fall Speeds
journal, April 2014

  • Mishra, Subhashree; Mitchell, David L.; Turner, David D.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 7
  • DOI: 10.1002/2013JD020602

In situ and lidar observations of tropopause subvisible cirrus clouds during TC4
journal, January 2010

  • Davis, Sean; Hlavka, Dennis; Jensen, Eric
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD013093

On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization
journal, November 2014


Ice Particle Evolution in the Anvil of a Severe Thunderstorm during CCOPE
journal, November 1986


A General Approach for Deriving the Properties of Cirrus and Stratiform Ice Cloud Particles
journal, January 2002


Distribution of tropical cirrus in relation to convection: DISTRIBUTION OF TROPICAL CIRRUS
journal, November 2002

  • Massie, Steven; Gettelman, Andrew; Randel, William
  • Journal of Geophysical Research: Atmospheres, Vol. 107, Issue D21
  • DOI: 10.1029/2001JD001293

Water Vapor in the Lower Stratosphere
journal, August 2012


Ice supersaturations and cirrus cloud crystal numbers
journal, January 2009

  • Krämer, M.; Schiller, C.; Afchine, A.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 11
  • DOI: 10.5194/acp-9-3505-2009

The origin of midlatitude ice clouds and the resulting influence on their microphysical properties
journal, January 2016

  • Luebke, Anna E.; Afchine, Armin; Costa, Anja
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 9
  • DOI: 10.5194/acp-16-5793-2016

Tropical anvil clouds and climate sensitivity
journal, August 2016

  • Hartmann, Dennis L.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 32
  • DOI: 10.1073/pnas.1610455113

Ice particle habits in Arctic clouds
journal, May 1999

  • Korolev, A. V.; Isaac, G. A.; Hallett, J.
  • Geophysical Research Letters, Vol. 26, Issue 9
  • DOI: 10.1029/1999GL900232

Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus
journal, April 2014

  • Muhlbauer, Andreas; Ackerman, Thomas P.; Comstock, Jennifer M.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 7
  • DOI: 10.1002/2013JD020035

Cloud Feedbacks in the Climate System: A Critical Review
journal, January 2005


Improvement in Determination of Ice Water Content from Two-Dimensional Particle Imagery. Part I: Image-to-Mass Relationships
journal, September 2006

  • Baker, Brad; Lawson, R. Paul
  • Journal of Applied Meteorology and Climatology, Vol. 45, Issue 9
  • DOI: 10.1175/JAM2398.1

Cloud and Aerosol Research Capabilities at FARS: The Facility for Atmospheric Remote Sensing
journal, June 2001


The Microphysics of Ice and Precipitation Development in Tropical Cumulus Clouds
journal, June 2015

  • Lawson, R. Paul; Woods, Sarah; Morrison, Hugh
  • Journal of the Atmospheric Sciences, Vol. 72, Issue 6
  • DOI: 10.1175/JAS-D-14-0274.1

Thin and Subvisual Tropopause Tropical Cirrus: Observations and Radiative Impacts
journal, June 2000


Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing
journal, January 2016


The Tropical Warm Pool International Cloud Experiment
journal, May 2008

  • May, Peter T.; Mather, James H.; Vaughan, Geraint
  • Bulletin of the American Meteorological Society, Vol. 89, Issue 5
  • DOI: 10.1175/BAMS-89-5-629

The Life Cycle and Net Radiative Effect of Tropical Anvil Clouds
journal, December 2018

  • Hartmann, Dennis L.; Gasparini, Blaž; Berry, Sara E.
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 12
  • DOI: 10.1029/2018MS001484

Aggregation of Ice Crystals in Cirrus
journal, October 1989


Obtaining Best Estimates for the Microphysical and Radiative Properties of Tropical Ice Clouds from TWP-ICE In Situ Microphysical Observations
journal, April 2011

  • Protat, A.; McFarquhar, G. M.; Um, J.
  • Journal of Applied Meteorology and Climatology, Vol. 50, Issue 4
  • DOI: 10.1175/2010JAMC2401.1

Aircraft Observations of Cumulus Microphysics Ranging from the Tropics to Midlatitudes: Implications for a “New” Secondary Ice Process
journal, September 2017

  • Lawson, Paul; Gurganus, Colin; Woods, Sarah
  • Journal of the Atmospheric Sciences, Vol. 74, Issue 9
  • DOI: 10.1175/JAS-D-17-0033.1

Relative Humidity and Temperature Influences on Cirrus Formation and Evolution: Observations from Wave Clouds and FIRE II
journal, December 1995


An overview of the microphysical structure of cirrus clouds observed during EMERALD-1
journal, April 2005

  • Gallagher, M. W.; Connolly, P. J.; Whiteway, J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 607
  • DOI: 10.1256/qj.03.138

Improved Representation of Ice Particle Masses Based on Observations in Natural Clouds
journal, October 2010

  • Heymsfield, Andrew J.; Schmitt, Carl; Bansemer, Aaron
  • Journal of the Atmospheric Sciences, Vol. 67, Issue 10
  • DOI: 10.1175/2010JAS3507.1

Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape
journal, July 1996

  • Mishchenko, Michael I.; Rossow, William B.; Macke, Andreas
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D12
  • DOI: 10.1029/96JD01155

Physical processes controlling the spatial distributions of relative humidity in the tropical tropopause layer over the Pacific: TTL RELATIVE HUMIDITY DISTRIBUTION
journal, June 2017

  • Jensen, Eric J.; Thornberry, Troy D.; Rollins, Andrew W.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 11
  • DOI: 10.1002/2017JD026632

Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation
journal, May 2013


Cirrus Clouds
journal, January 2017


The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus : Effective Density of Small Ice Particles
journal, November 2012

  • Cotton, R. J.; Field, P. R.; Ulanowski, Z.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 139, Issue 676
  • DOI: 10.1002/qj.2058

The Influence of Electric Fields on the Aggregation of Ice Crystals [氷晶の集合現象に対する電場の影響]
journal, January 1975

  • Saunders, C. P. R.; Wahab, N. M. A.
  • Journal of the Meteorological Society of Japan. Ser. II, Vol. 53, Issue 2
  • DOI: 10.2151/jmsj1965.53.2_121

Ice nucleation and dehydration in the Tropical Tropopause Layer
journal, January 2013

  • Jensen, E. J.; Diskin, G.; Lawson, R. P.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 6
  • DOI: 10.1073/pnas.1217104110

The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New Airborne, High-Speed, High-Resolution Particle Imaging Probe
journal, November 2006

  • Lawson, R. Paul; O’Connor, Darren; Zmarzly, Patrick
  • Journal of Atmospheric and Oceanic Technology, Vol. 23, Issue 11
  • DOI: 10.1175/JTECH1927.1

Microphysical Observations of Tropical Clouds
journal, February 2002


Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer
journal, January 2008

  • Lawson, R. P.; Pilson, B.; Baker, B.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 6
  • DOI: 10.5194/acp-8-1609-2008

Single-scattering properties of aggregates of plates
journal, January 2009

  • Um, Junshik; McFarquhar, Greg M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 135, Issue 639
  • DOI: 10.1002/qj.378

In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part II: Cirrus Clouds
journal, December 2006

  • Lawson, R. Paul; Baker, Brad; Pilson, Bryan
  • Journal of the Atmospheric Sciences, Vol. 63, Issue 12
  • DOI: 10.1175/JAS3803.1

Cirrus Crystal Terminal Velocities
journal, April 2000


Ice particles in the upper anvil regions of midlatitude continental thunderstorms: the case for frozen-drop aggregates
journal, January 2014

  • Stith, J. L.; Avallone, L. M.; Bansemer, A.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 4
  • DOI: 10.5194/acp-14-1973-2014

The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft Measurements in the Tropical Western Pacific
journal, January 2017

  • Jensen, Eric J.; Pfister, Leonhard; Jordan, David E.
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 1
  • DOI: 10.1175/BAMS-D-14-00263.1

The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback
journal, July 1990


A Summary of the Physical Properties of Cirrus Clouds
journal, September 1990


Cloud Particle Measurements in Thunderstorm Anvils and Possible Weather Threat to Aviation
journal, January 1998

  • Lawson, R. Paul; Angus, Leigh J.; Heymsfield, Andrew J.
  • Journal of Aircraft, Vol. 35, Issue 1
  • DOI: 10.2514/2.2268

The balanced radiative effect of tropical anvil clouds: Balance Anvil Clouds
journal, May 2017

  • Hartmann, Dennis L.; Berry, Sara E.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 9
  • DOI: 10.1002/2017JD026460

A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere
journal, January 2015

  • Thornberry, T. D.; Rollins, A. W.; Gao, R. S.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 1
  • DOI: 10.5194/amt-8-211-2015

Anvil microphysical signatures associated with lightning-produced NO x
journal, January 2016

  • Stith, Jeffrey L.; Basarab, Brett; Rutledge, Steven A.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 4
  • DOI: 10.5194/acp-16-2243-2016

The rapid glaciation of slightly supercooled cumulus clouds
journal, January 1996

  • Mason, B. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 122, Issue 530
  • DOI: 10.1002/qj.49712253003

A Review of Ice Cloud Optical Property Models for Passive Satellite Remote Sensing
journal, December 2018

  • Yang, Ping; Hioki, Souichiro; Saito, Masanori
  • Atmosphere, Vol. 9, Issue 12
  • DOI: 10.3390/atmos9120499

The Glaciating Behavior of Small Cumulonimbus Clouds
journal, January 1963