skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001)

Abstract

The structure of magnetic domains, i.e. regions of uniform magnetization separated by domain walls, depends on the balance of competing interactions present in ferromagnetic (or ferrimagnetic) materials. When these interactions change then domain configurations also change as a result. Magnetite provides a good test bench to study these effects, as its magnetocrystalline anisotropy varies significantly with temperature. Using spin-polarized electron microscopy to map the micromagnetic domain structure in the (001) surface of a macroscopic magnetite crystal (~1 cm size) shows complex domain patterns with characteristic length-scales in the micrometer range and highly temperature dependent domain geometries. Although heating above the Curie temperature erases the domain patterns completely, cooling down reproduces domain patterns not only in terms of general characteristics: instead, complex microscopic domain geometries are reproduced in almost perfect fidelity between heating cycles. A possible explanation of the origin of the high-fidelity reproducibility is suggested to be a combination of the presence of hematite inclusions that lock bulk domains, together with the strong effect of the first order magnetocrystalline anisotropy which competes with the shape anisotropy to give rise to the observed complex patterns.

Authors:
 [1];  [2];  [1];  [3];  [3];  [2]; ORCiD logo [1]
  1. Spanish National Research Council (CSIC), Madrid (Spain)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Univ. Complutense, Madrid (Spain); Unidad Asociada IQFR(CSIC)-UCM, Madrid (Spain)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); MINECO
OSTI Identifier:
1592411
Grant/Contract Number:  
AC02-05CH11231; BES-2013-063396
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; electronic and spintronic devices; surfaces, interfaces and thin films

Citation Formats

Martín-García, Laura, Chen, Gong, Montaña, Yaiza, Mascaraque, Arantzazu, Pabón, Beatriz M., Schmid, Andreas K., and de la Figuera, Juan. Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001). United States: N. p., 2018. Web. https://doi.org/10.1038/s41598-018-24160-1.
Martín-García, Laura, Chen, Gong, Montaña, Yaiza, Mascaraque, Arantzazu, Pabón, Beatriz M., Schmid, Andreas K., & de la Figuera, Juan. Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001). United States. https://doi.org/10.1038/s41598-018-24160-1
Martín-García, Laura, Chen, Gong, Montaña, Yaiza, Mascaraque, Arantzazu, Pabón, Beatriz M., Schmid, Andreas K., and de la Figuera, Juan. Mon . "Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001)". United States. https://doi.org/10.1038/s41598-018-24160-1. https://www.osti.gov/servlets/purl/1592411.
@article{osti_1592411,
title = {Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001)},
author = {Martín-García, Laura and Chen, Gong and Montaña, Yaiza and Mascaraque, Arantzazu and Pabón, Beatriz M. and Schmid, Andreas K. and de la Figuera, Juan},
abstractNote = {The structure of magnetic domains, i.e. regions of uniform magnetization separated by domain walls, depends on the balance of competing interactions present in ferromagnetic (or ferrimagnetic) materials. When these interactions change then domain configurations also change as a result. Magnetite provides a good test bench to study these effects, as its magnetocrystalline anisotropy varies significantly with temperature. Using spin-polarized electron microscopy to map the micromagnetic domain structure in the (001) surface of a macroscopic magnetite crystal (~1 cm size) shows complex domain patterns with characteristic length-scales in the micrometer range and highly temperature dependent domain geometries. Although heating above the Curie temperature erases the domain patterns completely, cooling down reproduces domain patterns not only in terms of general characteristics: instead, complex microscopic domain geometries are reproduced in almost perfect fidelity between heating cycles. A possible explanation of the origin of the high-fidelity reproducibility is suggested to be a combination of the presence of hematite inclusions that lock bulk domains, together with the strong effect of the first order magnetocrystalline anisotropy which competes with the shape anisotropy to give rise to the observed complex patterns.},
doi = {10.1038/s41598-018-24160-1},
journal = {Scientific Reports},
number = 1,
volume = 8,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spin reorientation transition of magnetite (001)
journal, April 2016

  • Martín-García, Laura; Mascaraque, Arantzazu; Pabón, Beatriz M.
  • Physical Review B, Vol. 93, Issue 13
  • DOI: 10.1103/PhysRevB.93.134419

Cubic magnetic anisotropy of nonstoichiometric magnetite
journal, September 1992


Temperature dependence of magnetic domains in magnetite crystals
journal, May 1988

  • Heider, Franz; Halgedahl, Susan L.; Dunlop, David J.
  • Geophysical Research Letters, Vol. 15, Issue 5
  • DOI: 10.1029/GL015i005p00499

On the construction of an Fe3O4-based all-oxide spin valve
journal, March 2000

  • van der Zaag, P. J.; Bloemen, P. J. H.; Gaines, J. M.
  • Journal of Magnetism and Magnetic Materials, Vol. 211, Issue 1-3
  • DOI: 10.1016/S0304-8853(99)00751-9

Origin of the Anomalous Magnetic Behavior in Single Crystal Fe 3 O 4 Films
journal, December 1997


Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective
journal, January 2000


Magnetic domain structure of multidomain magnetite as a function of temperature: observation by Kerr microscopy
journal, March 1999


The design and verification of MuMax3
journal, October 2014

  • Vansteenkiste, Arne; Leliaert, Jonathan; Dvornik, Mykola
  • AIP Advances, Vol. 4, Issue 10
  • DOI: 10.1063/1.4899186

Magnetic imaging with spin-polarized low-energy electron microscopy
journal, April 2010

  • Rougemaille, N.; Schmid, A. K.
  • The European Physical Journal Applied Physics, Vol. 50, Issue 2
  • DOI: 10.1051/epjap/2010048

Closure domains in magnetite
journal, February 1995

  • Özdemir, Özden; Xu, Song; Dunlop, David J.
  • Journal of Geophysical Research: Solid Earth, Vol. 100, Issue B2
  • DOI: 10.1029/94JB02874

Oxidation of Magnetite(100) to Hematite Observed by in Situ Spectroscopy and Microscopy
journal, August 2014

  • McCarty, Kevin F.; Monti, Matteo; Nie, Shu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp5037603

From epitaxial growth of ferrite thin films to spin-polarized tunnelling
journal, March 2013


Low-temperature cycling of isothermal and anhysteretic remanence: microcoercivity and magnetic memory
journal, January 2003

  • Muxworthy, Adrian R.; Dunlop, David J.; Özdemir, Özden
  • Earth and Planetary Science Letters, Vol. 205, Issue 3-4
  • DOI: 10.1016/S0012-821X(02)01039-7

Real-space imaging of the Verwey transition at the (100) surface of magnetite
journal, October 2013


Spin and orbital magnetic moment of reconstructed 2 × 2 R 45 magnetite(001)
journal, January 2015

  • Martín-García, Laura; Gargallo-Caballero, Raquel; Monti, Matteo
  • Physical Review B, Vol. 91, Issue 2
  • DOI: 10.1103/PhysRevB.91.020408

Spiral-like continuous spin-reorientation transition of Fe/Ni bilayers on Cu(100)
journal, June 2004


Noble metal capping effects on the spin-reorientation transitions of Co/Ru(0001)
journal, July 2008


Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes
journal, January 1999


Coercive force of single crystals of magnetite at low temperatures
journal, May 2000


Insight into Magnetite’s Redox Catalysis from Observing Surface Morphology during Oxidation
journal, June 2013

  • Nie, Shu; Starodub, Elena; Monti, Matteo
  • Journal of the American Chemical Society, Vol. 135, Issue 27
  • DOI: 10.1021/ja402599t

Direct observation of ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition
journal, August 2010

  • Kasama, Takeshi; Church, Nathan S.; Feinberg, Joshua M.
  • Earth and Planetary Science Letters, Vol. 297, Issue 1-2
  • DOI: 10.1016/j.epsl.2010.05.004

Mechanism of Low Temperature Oxidation of Magnetites
journal, September 1968

  • Colombo, U.; Fagherazzi, G.; Gazzarrini, F.
  • Nature, Vol. 219, Issue 5158
  • DOI: 10.1038/2191036a0

High-temperature magnetostriction of magnetite and titanomagnetites
journal, January 1993

  • Moskowitz, Bruce M.
  • Journal of Geophysical Research: Solid Earth, Vol. 98, Issue B1
  • DOI: 10.1029/92JB01846

Magnetocrystalline Anisotropy of Low Temperature Phase of Magnetite
journal, December 1976

  • Abe, Kōki; Miyamoto, Yoshiko; Chikazumi, Sōshin
  • Journal of the Physical Society of Japan, Vol. 41, Issue 6
  • DOI: 10.1143/JPSJ.41.1894

Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy
journal, July 2013


Mechanism of Oxidation of Magnetite to γ-Fe2O3
journal, March 1968

  • Gallagher, K. J.; Feitknecht, W.; Mannweiler, U.
  • Nature, Vol. 217, Issue 5134
  • DOI: 10.1038/2171118a0

A compact electron‐spin‐polarization manipulator
journal, April 1995

  • Duden, T.; Bauer, E.
  • Review of Scientific Instruments, Vol. 66, Issue 4
  • DOI: 10.1063/1.1145569

Direct imaging of nanoscale magnetic interactions in minerals
journal, December 2002

  • Harrison, R. J.; Dunin-Borkowski, R. E.; Putnis, A.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 26
  • DOI: 10.1073/pnas.262514499

Effect of crystal defects and internal stress on the domain structure and magnetic properties of magnetite
journal, September 1997

  • Özdemir, Özden; Dunlop, David J.
  • Journal of Geophysical Research: Solid Earth, Vol. 102, Issue B9
  • DOI: 10.1029/97JB01779

Imaging Spin-Reorientation Transitions in Consecutive Atomic Co Layers on Ru(0001)
journal, April 2006


A new surface microscope for magnetic imaging
journal, January 1994

  • Grzelakowski, K.; Duden, T.; Bauer, E.
  • IEEE Transactions on Magnetics, Vol. 30, Issue 6
  • DOI: 10.1109/20.334129

Ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Part I: electron holography and Lorentz microscopy
journal, January 2013


Ferromagnetic Resonance Absorption in Magnetite Single Crystals
journal, May 1950


Physical Theory of Ferromagnetic Domains
journal, October 1949


Room temperature in-plane ⟨100⟩ magnetic easy axis for Fe 3 O 4 /SrTiO 3 (001):Nb grown by infrared pulsed laser deposition
journal, December 2013

  • Monti, Matteo; Sanz, Mikel; Oujja, Mohamed
  • Journal of Applied Physics, Vol. 114, Issue 22
  • DOI: 10.1063/1.4837656

    Works referencing / citing this record:

    Magnetite and the Verwey transition, from γ-rays to low-energy electrons
    journal, May 2019


    Coherent X-ray spectroscopy reveals the persistence of island arrangements during layer-by-layer growth
    journal, March 2019


    Evidence of anomalous switching of the in-plane magnetic easy axis with temperature in Fe 3 O 4 film on SrTiO 3 :Nb by v-MOKE and ferromagnetic resonance
    journal, January 2019

    • Cuñado, José Luis Fdez.; Camarero, Julio; Pedrosa, Francisco J.
    • Nanoscale, Vol. 11, Issue 42
    • DOI: 10.1039/c9nr04198b