skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hybrid Nanostructured Ni(OH)2/NiO for High Capacity Lithium–ion Battery Anodes

Abstract

A straightforward hydrothermal process followed by a controlled calcination technique is introduced for the synthesis of a Ni(OH)2 modified NiO nanohybrid structure. Conversion materials as Li-ion battery anodes, NiO in this case, suffer from capacity fade and structural/morphological instability during lithiation and delithiation. The novelty of this work is in utilizing this hybrid configuration to increase the specific capacity and enable reversible electrochemistry. Here, we study the lithiation/delithiation process of NiO using a suite of spectroscopy and microscopy techniques from the atomic to electrode scale. We propose a mechanism for a reversible redox couple behavior of the NiO electrode by means of a hybrid Ni(OH)2/NiO structure. The ultimate objective of this work is to guide the development of anode with rationally-designed heterogeneity to create high capacity Li-ion batteries with excellent cycling and rate performance.

Authors:
 [1];  [2];  [3];  [4];  [2];  [2]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States); Weifang Univ. (China)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
  4. Shanghai Jiao Tong Univ. (China)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1592170
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Electrochemical Energy Conversion and Storage
Additional Journal Information:
Journal Volume: 17; Journal Issue: 4; Journal ID: ISSN 2381-6872
Publisher:
ASME
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Ren, Yang, Ko, Jesse S., Kasse, Robert M., Song, Xuefeng, Toney, Michael F., and Weker, Johanna Nelson. Hybrid Nanostructured Ni(OH)2/NiO for High Capacity Lithium–ion Battery Anodes. United States: N. p., 2020. Web. doi:10.1115/1.4046491.
Ren, Yang, Ko, Jesse S., Kasse, Robert M., Song, Xuefeng, Toney, Michael F., & Weker, Johanna Nelson. Hybrid Nanostructured Ni(OH)2/NiO for High Capacity Lithium–ion Battery Anodes. United States. doi:https://doi.org/10.1115/1.4046491
Ren, Yang, Ko, Jesse S., Kasse, Robert M., Song, Xuefeng, Toney, Michael F., and Weker, Johanna Nelson. Fri . "Hybrid Nanostructured Ni(OH)2/NiO for High Capacity Lithium–ion Battery Anodes". United States. doi:https://doi.org/10.1115/1.4046491. https://www.osti.gov/servlets/purl/1592170.
@article{osti_1592170,
title = {Hybrid Nanostructured Ni(OH)2/NiO for High Capacity Lithium–ion Battery Anodes},
author = {Ren, Yang and Ko, Jesse S. and Kasse, Robert M. and Song, Xuefeng and Toney, Michael F. and Weker, Johanna Nelson},
abstractNote = {A straightforward hydrothermal process followed by a controlled calcination technique is introduced for the synthesis of a Ni(OH)2 modified NiO nanohybrid structure. Conversion materials as Li-ion battery anodes, NiO in this case, suffer from capacity fade and structural/morphological instability during lithiation and delithiation. The novelty of this work is in utilizing this hybrid configuration to increase the specific capacity and enable reversible electrochemistry. Here, we study the lithiation/delithiation process of NiO using a suite of spectroscopy and microscopy techniques from the atomic to electrode scale. We propose a mechanism for a reversible redox couple behavior of the NiO electrode by means of a hybrid Ni(OH)2/NiO structure. The ultimate objective of this work is to guide the development of anode with rationally-designed heterogeneity to create high capacity Li-ion batteries with excellent cycling and rate performance.},
doi = {10.1115/1.4046491},
journal = {Journal of Electrochemical Energy Conversion and Storage},
number = 4,
volume = 17,
place = {United States},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Experimental Evidence for Electrolyte Involvement in the Reversible Reactivity of CoO toward Compounds at Low Potential
journal, January 2002

  • Dollé, Mickaël; Poizot, Philippe; Dupont, Loic
  • Electrochemical and Solid-State Letters, Vol. 5, Issue 1
  • DOI: 10.1149/1.1425262

Electrospun NiO nanofibers as high performance anode material for Li-ion batteries
journal, April 2013


Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy
journal, July 2011

  • Meirer, Florian; Cabana, Jordi; Liu, Yijin
  • Journal of Synchrotron Radiation, Vol. 18, Issue 5
  • DOI: 10.1107/S0909049511019364

Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries
journal, March 2013

  • Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R.
  • Chemical Reviews, Vol. 113, Issue 7
  • DOI: 10.1021/cr3001884

Size effect of nickel oxide for lithium ion battery anode
journal, May 2014


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium
journal, January 2001

  • Débart, A.; Dupont, L.; Poizot, P.
  • Journal of The Electrochemical Society, Vol. 148, Issue 11
  • DOI: 10.1149/1.1409971

Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries
journal, January 2018


Self-Assembled NiO/Ni(OH) 2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery
journal, February 2016


NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries
journal, January 2011


Porous NiO/graphene hybrid film as anode for lithium ion batteries
journal, August 2015


A critical review-promises and barriers of conversion electrodes for Li-ion batteries
journal, April 2017

  • Kraytsberg, Alexander; Ein-Eli, Yair
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 7
  • DOI: 10.1007/s10008-017-3580-9

Scalable Synthesis of Urchin- and Flowerlike Hierarchical NiO Microspheres and Their Electrochemical Property for Lithium Storage
journal, June 2013

  • Pan, Jia Hong; Huang, Qizhao; Koh, Zhen Yu
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 13
  • DOI: 10.1021/am401330g

Spherical Clusters of NiO Nanoshafts for Lithium-Ion Battery Anodes
journal, January 2006

  • Yuan, L.; Guo, Z. P.; Konstantinov, K.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 11
  • DOI: 10.1149/1.2345550

Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery
journal, February 2013


Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries
journal, May 2018


Ni/C Hierarchical Nanostructures with Ni Nanoparticles Highly Dispersed in N-Containing Carbon Nanosheets: Origin of Li Storage Capacity
journal, November 2012

  • Su, Liwei; Zhou, Zhen; Shen, Panwen
  • The Journal of Physical Chemistry C, Vol. 116, Issue 45
  • DOI: 10.1021/jp310054b

Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode
journal, September 2018


Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode
journal, September 2018


Controllable synthesis of core–shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries
journal, January 2011

  • Zhang, Lijuan; Hu, Pu; Zhao, Xiuyun
  • Journal of Materials Chemistry, Vol. 21, Issue 45
  • DOI: 10.1039/c1jm12990b

Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance
journal, March 2013


In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage
journal, January 2015

  • Liu, Wenwen; Lu, Congxiang; Wang, Xingli
  • Journal of Materials Chemistry A, Vol. 3, Issue 2
  • DOI: 10.1039/C4TA04023F

Using X-ray Microscopy To Understand How Nanoporous Materials Can Be Used To Reduce the Large Volume Change in Alloy Anodes
journal, January 2017


Conversion-type Anode Materials for Alkali-Ion Batteries: State of the Art and Possible Research Directions
journal, April 2018


In Situ Measurements of Li Ion Battery Electrode Material Conductivity:  Application to Li x CoO 2 and Conversion Reactions
journal, July 2007

  • Sauvage, F.; Tarascon, J-M.; Baudrin, E.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 26
  • DOI: 10.1021/jp0720035

On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential
journal, January 2002

  • Laruelle, S.; Grugeon, S.; Poizot, P.
  • Journal of The Electrochemical Society, Vol. 149, Issue 5, p. A627-A634
  • DOI: 10.1149/1.1467947

Nanosheet-Based NiO Microspheres: Controlled Solvothermal Synthesis and Lithium Storage Performances
journal, November 2009

  • Liu, Lu; Li, Yue; Yuan, Shuming
  • The Journal of Physical Chemistry C, Vol. 114, Issue 1
  • DOI: 10.1021/jp909014w

Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes
journal, May 2019

  • Yan, Chong; Li, Hao-Ran; Chen, Xiang
  • Journal of the American Chemical Society, Vol. 141, Issue 23
  • DOI: 10.1021/jacs.9b05029

Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
journal, January 2011

  • Liu, Hao; Wang, Guoxiu; Liu, Jian
  • Journal of Materials Chemistry, Vol. 21, Issue 9
  • DOI: 10.1039/c0jm03132a

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Facile synthesis of hierarchically porous NiO micro-tubes as advanced anode materials for lithium-ion batteries
journal, January 2014

  • Wang, Nana; Chen, Liang; Ma, Xiaojian
  • J. Mater. Chem. A, Vol. 2, Issue 40
  • DOI: 10.1039/C4TA04321A

Electrochemical and Infrared Studies of the Reduction of Organic Carbonates
journal, January 2001

  • Zhang, Xuerong; Kostecki, Robert; Richardson, Thomas J.
  • Journal of The Electrochemical Society, Vol. 148, Issue 12
  • DOI: 10.1149/1.1415547

High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes
journal, May 2018

  • Shi, Qiuwei; Zhong, Yiren; Wu, Min
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 22
  • DOI: 10.1073/pnas.1803634115

Tracking Non-Uniform Mesoscale Transport in LiFePO 4 Agglomerates During Electrochemical Cycling
journal, May 2015

  • Nelson Weker, Johanna; Li, Yiyang; Shanmugam, Rengarajan
  • ChemElectroChem, Vol. 2, Issue 10
  • DOI: 10.1002/celc.201500119

In situ X-ray-based imaging of nano materials
journal, May 2016

  • Weker, Johanna Nelson; Huang, Xiaojing; Toney, Michael F.
  • Current Opinion in Chemical Engineering, Vol. 12
  • DOI: 10.1016/j.coche.2016.01.006

Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries
journal, May 2015


Nickel Foam-Supported Porous NiO∕Ag Film Electrode for Lithium-Ion Batteries
journal, January 2008

  • Huang, X. H.; Tu, J. P.; Zeng, Z. Y.
  • Journal of The Electrochemical Society, Vol. 155, Issue 6
  • DOI: 10.1149/1.2904878