skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks

Abstract

Understanding the factors that affect self-diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self-diffusion of solvents saturated within the pores of large single crystals of MOF-5, IRMOF-3 (amino-functionalized MOF-5), and 17 MTV-MOF-5/IRMOF-3 materials at various mole fractions. We find that the apparent self-diffusion coefficient of N,N-dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF-5 and IRMOF-3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF-5 and IRMOF-3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self-diffusion coefficients for solvents in MOF-5 to those in IRMOF-3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent-linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker.

Authors:
 [1];  [2];  [3];  [4]
  1. Department of Chemistry, Kavli Energy NanoSciences Institute at Berkeley, and Berkeley Global Science InstituteUniversity of California-Berkeley Berkeley, California 94720 USA, Department of Chemical and Biomolecular EngineeringUniversity of California-Berkeley Berkeley, California 94720 USA, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley Berkeley CA 94720 USA
  2. Department of Chemical and Biomolecular EngineeringUniversity of California-Berkeley Berkeley, California 94720 USA
  3. Department of Chemistry, Kavli Energy NanoSciences Institute at Berkeley, and Berkeley Global Science InstituteUniversity of California-Berkeley Berkeley, California 94720 USA, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley Berkeley CA 94720 USA
  4. Department of Chemical and Biomolecular EngineeringUniversity of California-Berkeley Berkeley, California 94720 USA, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley Berkeley CA 94720 USA
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS); Univ. of California, Oakland, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1591981
Alternate Identifier(s):
OSTI ID: 1591982; OSTI ID: 1623520; OSTI ID: 1760198
Grant/Contract Number:  
SC0001015; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
ChemPhysChem
Additional Journal Information:
Journal Name: ChemPhysChem Journal Volume: 21 Journal Issue: 1; Journal ID: ISSN 1439-4235
Publisher:
ChemPubSoc Europe
Country of Publication:
Germany
Language:
English
Subject:
diffusion; liquids; metal-organic frameworks; nuclear magnetic resonance; pulsed-field gradient; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Osborn Popp, Thomas M., Plantz, Ariel Z., Yaghi, Omar M., and Reimer, Jeffrey A. Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks. Germany: N. p., 2019. Web. doi:10.1002/cphc.201901043.
Osborn Popp, Thomas M., Plantz, Ariel Z., Yaghi, Omar M., & Reimer, Jeffrey A. Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks. Germany. doi:https://doi.org/10.1002/cphc.201901043
Osborn Popp, Thomas M., Plantz, Ariel Z., Yaghi, Omar M., and Reimer, Jeffrey A. Thu . "Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks". Germany. doi:https://doi.org/10.1002/cphc.201901043.
@article{osti_1591981,
title = {Precise Control of Molecular Self‐Diffusion in Isoreticular and Multivariate Metal‐Organic Frameworks},
author = {Osborn Popp, Thomas M. and Plantz, Ariel Z. and Yaghi, Omar M. and Reimer, Jeffrey A.},
abstractNote = {Understanding the factors that affect self-diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self-diffusion of solvents saturated within the pores of large single crystals of MOF-5, IRMOF-3 (amino-functionalized MOF-5), and 17 MTV-MOF-5/IRMOF-3 materials at various mole fractions. We find that the apparent self-diffusion coefficient of N,N-dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF-5 and IRMOF-3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF-5 and IRMOF-3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self-diffusion coefficients for solvents in MOF-5 to those in IRMOF-3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent-linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker.},
doi = {10.1002/cphc.201901043},
journal = {ChemPhysChem},
number = 1,
volume = 21,
place = {Germany},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: https://doi.org/10.1002/cphc.201901043

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Molecular structure and corresponding optical microscope photographs of MOF-5 (left), (MOF- 5)0.64(IRMOF-3)0.36 (middle), and IRMOF-3 (right).

Save / Share:

Works referenced in this record:

A Simple NMR-Based Method for Studying the Spatial Distribution of Linkers within Mixed-Linker Metal-Organic Frameworks
journal, July 2015

  • Krajnc, Andraž; Kos, Tomaž; Zabukovec Logar, Nataša
  • Angewandte Chemie, Vol. 127, Issue 36
  • DOI: 10.1002/ange.201504426

Dynamic DMF Binding in MOF-5 Enables the Formation of Metastable Cobalt-Substituted MOF-5 Analogues
journal, July 2015


Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks
journal, February 2010


Diffusion in Nanoporous Materials
book, April 2012


Revisiting Anisotropic Diffusion of Carbon Dioxide in the Metal–Organic Framework Zn 2 (dobpdc)
journal, June 2018

  • Forse, Alexander C.; Altobelli, Stephen A.; Benders, Stefan
  • The Journal of Physical Chemistry C, Vol. 122, Issue 27
  • DOI: 10.1021/acs.jpcc.8b02843

Heterogeneous heck coupling in multivariate metal–organic frameworks for enhanced selectivity
journal, May 2015


“Heterogeneity within Order” in Metal-Organic Frameworks
journal, January 2015

  • Furukawa, Hiroyasu; Müller, Ulrich; Yaghi, Omar M.
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410252

NMR-Untersuchungen zur Diffusion von Kohlenwasserstoffen im metall-organischen Netzwerk MOF-5
journal, March 2006

  • Stallmach, Frank; Gröger, Stefan; Künzel, Volker
  • Angewandte Chemie, Vol. 118, Issue 13
  • DOI: 10.1002/ange.200502553

Metal-organic frameworks with high capacity and selectivity for harmful gases
journal, August 2008

  • Britt, D.; Tranchemontagne, D.; Yaghi, O. M.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 33, p. 11623-11627
  • DOI: 10.1073/pnas.0804900105

Homogeneity of flexible metal–organic frameworks containing mixed linkers
journal, January 2012

  • Lescouet, Tristan; Kockrick, Emanuel; Bergeret, Gérard
  • Journal of Materials Chemistry, Vol. 22, Issue 20
  • DOI: 10.1039/c2jm15966j

Translational and Rotational Motion of C8 Aromatics Adsorbed in Isotropic Porous Media (MOF-5): NMR Studies and MD Simulations
journal, July 2017

  • Witherspoon, Velencia J.; Yu, Lucy M.; Jawahery, Sudi
  • The Journal of Physical Chemistry C, Vol. 121, Issue 28
  • DOI: 10.1021/acs.jpcc.7b03181

Spin Diffusion Measurements: Spin Echoes in the Presence of a Time‐Dependent Field Gradient
journal, January 1965

  • Stejskal, E. O.; Tanner, J. E.
  • The Journal of Chemical Physics, Vol. 42, Issue 1
  • DOI: 10.1063/1.1695690

High Magnetic Field Gradient PGSE NMR in the Presence of a Large Polarizing Field
journal, July 1998

  • Callaghan, Paul T.; Komlosh, Michal E.; Nyden, Magnus
  • Journal of Magnetic Resonance, Vol. 133, Issue 1
  • DOI: 10.1006/jmre.1998.1424

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage
journal, January 2002

  • Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel
  • Science, Vol. 295, Issue 5554, p. 469-472
  • DOI: 10.1126/science.1067208

Chromatography in a Single Metal−Organic Framework (MOF) Crystal
journal, November 2010

  • Han, Shuangbing; Wei, Yanhu; Valente, Cory
  • Journal of the American Chemical Society, Vol. 132, Issue 46
  • DOI: 10.1021/ja1074322

Mapping of Functional Groups in Metal-Organic Frameworks
journal, July 2013


Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177
journal, February 2015

  • Zhang, Yue-Biao; Furukawa, Hiroyasu; Ko, Nakeun
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja512311a

Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal−Organic Frameworks
journal, February 2006

  • Rowsell, Jesse L. C.; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 128, Issue 4, p. 1304-1315
  • DOI: 10.1021/ja056639q

Construction and calibration of a 50 T/m z-gradient coil for quantitative diffusion microimaging
journal, May 2007


Characterization of interfacial water in MOF-5 (Zn4(O)(BDC)3)—a combined spectroscopic and theoretical study
journal, January 2008

  • Schröck, K.; Schröder, F.; Heyden, M.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 32
  • DOI: 10.1039/b807458p

Ethene/ethane mixture diffusion in the MOF sieve ZIF-8 studied by MAS PFG NMR diffusometry
journal, January 2012


A Simple NMR-Based Method for Studying the Spatial Distribution of Linkers within Mixed-Linker Metal-Organic Frameworks
journal, July 2015

  • Krajnc, Andraž; Kos, Tomaž; Zabukovec Logar, Nataša
  • Angewandte Chemie International Edition, Vol. 54, Issue 36
  • DOI: 10.1002/anie.201504426

Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions
journal, February 2017


“Heterogenität innerhalb von Ordnung” in Metall-organischen Gerüsten
journal, January 2015

  • Furukawa, Hiroyasu; Müller, Ulrich; Yaghi, Omar M.
  • Angewandte Chemie, Vol. 127, Issue 11
  • DOI: 10.1002/ange.201410252

NMR Studies on the Diffusion of Hydrocarbons on the Metal-Organic Framework Material MOF-5
journal, March 2006

  • Stallmach, Frank; Gröger, Stefan; Künzel, Volker
  • Angewandte Chemie International Edition, Vol. 45, Issue 13, p. 2123-2126
  • DOI: 10.1002/anie.200502553

How Can a Hydrophobic MOF be Water-Unstable? Insight into the Hydration Mechanism of IRMOFs
journal, July 2012

  • De Toni, Marta; Jonchiere, Romain; Pullumbi, Pluton
  • ChemPhysChem, Vol. 13, Issue 15
  • DOI: 10.1002/cphc.201200455

Ultra-Tuning of the Aperture Size in Stiffened ZIF-8_Cm Frameworks with Mixed-Linker Strategy for Enhanced CO 2 /CH 4 Separation
journal, December 2018

  • Hou, Qianqian; Wu, Ying; Zhou, Sheng
  • Angewandte Chemie International Edition, Vol. 58, Issue 1
  • DOI: 10.1002/anie.201811638

Hydrogen Storage in Microporous Metal-Organic Frameworks
journal, May 2003

  • Rosi, Nathaniel L.; Eckert, Juergen; Eddaoudi, Mohamed
  • Science, Vol. 300, Issue 5622, p. 1127-1129
  • DOI: 10.1126/science.1083440

The Interaction of Water with MOF-5 Simulated by Molecular Dynamics
journal, August 2006

  • Greathouse, Jeffery A.; Allendorf, Mark D.
  • Journal of the American Chemical Society, Vol. 128, Issue 33
  • DOI: 10.1021/ja063506b

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Multivariate Metal–Organic Frameworks for Dialing-in the Binding and Programming the Release of Drug Molecules
journal, September 2017

  • Dong, Zhiyue; Sun, Yangzesheng; Chu, Jun
  • Journal of the American Chemical Society, Vol. 139, Issue 40
  • DOI: 10.1021/jacs.7b07392

Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays
journal, July 2004

  • Ruben, Mario; Rojo, Javier; Romero-Salguero, Francisco J.
  • Angewandte Chemie International Edition, Vol. 43, Issue 28
  • DOI: 10.1002/anie.200300636

Highly Tunable Molecular Sieving and Adsorption Properties of Mixed-Linker Zeolitic Imidazolate Frameworks
journal, March 2015

  • Eum, Kiwon; Jayachandrababu, Krishna C.; Rashidi, Fereshteh
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/jacs.5b00803

Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn 2 (dobpdc)
journal, January 2018

  • Forse, Alexander C.; Gonzalez, Miguel I.; Siegelman, Rebecca L.
  • Journal of the American Chemical Society, Vol. 140, Issue 5
  • DOI: 10.1021/jacs.7b09453

Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)
journal, November 2007

  • Kaye, Steven S.; Dailly, Anne; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 129, Issue 46, p. 14176-14177
  • DOI: 10.1021/ja076877g

Ethane diffusion in mixed linker zeolitic imidazolate framework-7-8 by pulsed field gradient NMR in combination with single crystal IR microscopy
journal, January 2018

  • Berens, Samuel; Chmelik, Christian; Hillman, Febrian
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 37
  • DOI: 10.1039/C8CP04889D

Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas
journal, July 2014


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.