skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural insights into a HECT-type E3 ligase AREL1 and its ubiquitination activities in vitro

Abstract

The HECT E3 ligase family comprises three subfamilies: NEDD4 E3 ubiquitin protein ligase (NEDD4), HECT and RLD domain–containing E3 ubiquitin protein ligase (HERC), and "other.” Most previous studies have focused on the NEDD4 subfamily. Apoptosis-resistant E3 ligase 1 (AREL1) belongs to “other” subfamily HECT that inhibits apoptosis by ubiquitinating and degrading proapoptotic proteins. In this paper, we report the crystal structure of the extended HECT domain of AREL1 (amino acids (aa) 436–823) at 2.4 Å resolution and its ubiquitination of the proapoptotic protein second mitochondria-derived activator of caspase (SMAC). We found that the extended HECT domain adopts an inverted, T-shaped, bilobed conformation and harbors an additional loop (aa 567–573) absent in all other HECT members. We also show that the N-terminal extended region (aa 436–482) preceding the HECT domain is indispensable for its stability and activity and that without this region, the HECT domain becomes inactive. AREL1 ubiquitinated SMAC, primarily on Lys62 and Lys191. We solved the crystal structure of the tetrameric form of SMAC to 2.8 Å resolution, revealing the Lys62 and Lys191 locations. The AREL1 HECT domain assembled Lys33-, Lys48-, and Lys63-linked polyubiquitin chains. Moreover, E701A substitution in the AREL1 HECT domain substantially increased its autopolyubiquitination and SMACmore » ubiquitination activity, whereas deletion of the last three amino acids at the C terminus completely abrogated AREL1 autoubiquitination and reduced SMAC biquitination. Finally, an AREL1-specific ubiquitin variant inhibited SMAC ubiquitination in vitro. Our findings may assist in the development of AREL1 inhibitors that block its anti-apoptotic activity in cancer.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. National Univ. of Singapore (Singapore)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Institute of General Medical Sciences (NIGMS); National Institutes of Health (NIH); Ministry of Education, Singapore; USDOE
OSTI Identifier:
1591895
Grant/Contract Number:  
P41 GM103403; S10 RR029205; AC02-06CH11357; R-154-000-B03-112 (MoE Tier 2); R154-000-A72-114 (AcRF Tier 1)
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Biological Chemistry
Additional Journal Information:
Journal Volume: 294; Journal Issue: 52; Journal ID: ISSN 0021-9258
Publisher:
American Society for Biochemistry and Molecular Biology
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; apoptosis; E3 ubiquitin ligase; ubiquitylation (ubiquitination); crystal structure; structure-function; structural biology; protein degradation; post-translational modification (PTM); cancer apoptosis-resistant E3 ligase 1 (AREL1); autopolyubiquitination; HECT domain; second mitochondria-derived activator of caspase (SMAC)

Citation Formats

Singh, Sunil, Ng, Joel, Nayak, Digant, and Sivaraman, J. Structural insights into a HECT-type E3 ligase AREL1 and its ubiquitination activities in vitro. United States: N. p., 2019. Web. https://doi.org/10.1074/jbc.RA119.010327.
Singh, Sunil, Ng, Joel, Nayak, Digant, & Sivaraman, J. Structural insights into a HECT-type E3 ligase AREL1 and its ubiquitination activities in vitro. United States. https://doi.org/10.1074/jbc.RA119.010327
Singh, Sunil, Ng, Joel, Nayak, Digant, and Sivaraman, J. Fri . "Structural insights into a HECT-type E3 ligase AREL1 and its ubiquitination activities in vitro". United States. https://doi.org/10.1074/jbc.RA119.010327. https://www.osti.gov/servlets/purl/1591895.
@article{osti_1591895,
title = {Structural insights into a HECT-type E3 ligase AREL1 and its ubiquitination activities in vitro},
author = {Singh, Sunil and Ng, Joel and Nayak, Digant and Sivaraman, J.},
abstractNote = {The HECT E3 ligase family comprises three subfamilies: NEDD4 E3 ubiquitin protein ligase (NEDD4), HECT and RLD domain–containing E3 ubiquitin protein ligase (HERC), and "other.” Most previous studies have focused on the NEDD4 subfamily. Apoptosis-resistant E3 ligase 1 (AREL1) belongs to “other” subfamily HECT that inhibits apoptosis by ubiquitinating and degrading proapoptotic proteins. In this paper, we report the crystal structure of the extended HECT domain of AREL1 (amino acids (aa) 436–823) at 2.4 Å resolution and its ubiquitination of the proapoptotic protein second mitochondria-derived activator of caspase (SMAC). We found that the extended HECT domain adopts an inverted, T-shaped, bilobed conformation and harbors an additional loop (aa 567–573) absent in all other HECT members. We also show that the N-terminal extended region (aa 436–482) preceding the HECT domain is indispensable for its stability and activity and that without this region, the HECT domain becomes inactive. AREL1 ubiquitinated SMAC, primarily on Lys62 and Lys191. We solved the crystal structure of the tetrameric form of SMAC to 2.8 Å resolution, revealing the Lys62 and Lys191 locations. The AREL1 HECT domain assembled Lys33-, Lys48-, and Lys63-linked polyubiquitin chains. Moreover, E701A substitution in the AREL1 HECT domain substantially increased its autopolyubiquitination and SMAC ubiquitination activity, whereas deletion of the last three amino acids at the C terminus completely abrogated AREL1 autoubiquitination and reduced SMAC biquitination. Finally, an AREL1-specific ubiquitin variant inhibited SMAC ubiquitination in vitro. Our findings may assist in the development of AREL1 inhibitors that block its anti-apoptotic activity in cancer.},
doi = {10.1074/jbc.RA119.010327},
journal = {Journal of Biological Chemistry},
number = 52,
volume = 294,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mechanisms Underlying Ubiquitination
journal, June 2001


Autoubiquitination of the 26S Proteasome on Rpn13 Regulates Breakdown of Ubiquitin Conjugates
journal, April 2014

  • Besche, Henrike C.; Sha, Zhe; Kukushkin, Nikolay V.
  • The EMBO Journal, Vol. 33, Issue 10
  • DOI: 10.1002/embj.201386906

Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming
journal, May 2013

  • Maspero, Elena; Valentini, Eleonora; Mari, Sara
  • Nature Structural & Molecular Biology, Vol. 20, Issue 6
  • DOI: 10.1038/nsmb.2566

ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space
journal, August 2015

  • Chari, Ashwin; Haselbach, David; Kirves, Jan-Martin
  • Nature Methods, Vol. 12, Issue 9
  • DOI: 10.1038/nmeth.3493

Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation
journal, March 2011

  • Maspero, Elena; Mari, Sara; Valentini, Eleonora
  • EMBO reports, Vol. 12, Issue 4
  • DOI: 10.1038/embor.2011.21

Dali server update
journal, April 2016

  • Holm, Liisa; Laakso, Laura M.
  • Nucleic Acids Research, Vol. 44, Issue W1
  • DOI: 10.1093/nar/gkw357

Identification of a Novel Anti-apoptotic E3 Ubiquitin Ligase That Ubiquitinates Antagonists of Inhibitor of Apoptosis Proteins SMAC, HtrA2, and ARTS
journal, March 2013

  • Kim, Jung-bin; Kim, So Youn; Kim, Byeong Mo
  • Journal of Biological Chemistry, Vol. 288, Issue 17
  • DOI: 10.1074/jbc.M112.436113

The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy
journal, November 2017


BALBES : a molecular-replacement pipeline
journal, December 2007

  • Long, Fei; Vagin, Alexei A.; Young, Paul
  • Acta Crystallographica Section D Biological Crystallography, Vol. 64, Issue 1
  • DOI: 10.1107/S0907444907050172

Regulating the human HECT E3 ligases
journal, June 2018


Insights into Ubiquitin Transfer Cascades from a Structure of a UbcH5B∼Ubiquitin-HECTNEDD4L Complex
journal, December 2009


E3 ubiquitin ligases in cancer and implications for therapies
journal, October 2017


Structure of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation
journal, May 2013


Structural and biochemical basis of apoptotic activation by Smac/DIABLO
journal, August 2000

  • Chai, Jijie; Du, Chunying; Wu, Jia-Wei
  • Nature, Vol. 406, Issue 6798
  • DOI: 10.1038/35022514

Ubiquitin in inflammation: the right linkage makes all the difference
journal, April 2014

  • Corn, Jacob E.; Vucic, Domagoj
  • Nature Structural & Molecular Biology, Vol. 21, Issue 4
  • DOI: 10.1038/nsmb.2808

Polyubiquitination by HECT E3s and the Determinants of Chain Type Specificity
journal, April 2009

  • Kim, H. C.; Huibregtse, J. M.
  • Molecular and Cellular Biology, Vol. 29, Issue 12
  • DOI: 10.1128/MCB.00240-09

PROCHECK: a program to check the stereochemical quality of protein structures
journal, April 1993

  • Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.
  • Journal of Applied Crystallography, Vol. 26, Issue 2
  • DOI: 10.1107/S0021889892009944

Targeting IAP proteins for therapeutic intervention in cancer
journal, February 2012

  • Fulda, Simone; Vucic, Domagoj
  • Nature Reviews Drug Discovery, Vol. 11, Issue 2
  • DOI: 10.1038/nrd3627

Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates
journal, February 2008

  • Ng, Cherlyn; Jackson, Rebecca A.; Buschdorf, Jan P.
  • The EMBO Journal, Vol. 27, Issue 5
  • DOI: 10.1038/emboj.2008.18

IAP antagonists: promising candidates for cancer therapy
journal, March 2010


System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes
journal, April 2016


Dimeric Switch of Hakai-truncated Monomers during Substrate Recognition: INSIGHTS FROM SOLUTION STUDIES AND NMR STRUCTURE
journal, July 2014

  • Mukherjee, Manjeet; Jing-Song, Fan; Ramachandran, Sarath
  • Journal of Biological Chemistry, Vol. 289, Issue 37
  • DOI: 10.1074/jbc.M114.592840

Rad6-Rad18 Mediates a Eukaryotic SOS Response by Ubiquitinating the 9-1-1 Checkpoint Clamp
journal, May 2008


Ubiquitination, intracellular trafficking, and degradation of connexins
journal, August 2012


Inference of Macromolecular Assemblies from Crystalline State
journal, September 2007


The Activator of Apoptosis Smac-DIABLO Acts as a Tetramer in Solution
journal, February 2015


Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages
journal, July 2012

  • Kulathu, Yogesh; Komander, David
  • Nature Reviews Molecular Cell Biology, Vol. 13, Issue 8
  • DOI: 10.1038/nrm3394

Inhibitor of apoptosis proteins and apoptosis
journal, April 2008


Structure of a novel phosphotyrosine-binding domain in Hakai that targets E-cadherin: Structure of a novel phosphotyrosine-binding domain in Hakai
journal, January 2012

  • Mukherjee, Manjeet; Chow, Soah Yee; Yusoff, Permeen
  • The EMBO Journal, Vol. 31, Issue 5
  • DOI: 10.1038/emboj.2011.496

Structural basis for the indispensable role of a unique zinc finger motif in LNX2 ubiquitination
journal, October 2015


Conformational Flexibility Underlies Ubiquitin Ligation Mediated by the WWP1 HECT Domain E3 Ligase
journal, January 2003


HECT E3s and human disease
journal, January 2007


Structure of LNX1:Ubc13 ~ Ubiquitin Complex Reveals the Role of Additional Motifs for the E3 Ligase Activity of LNX1
journal, April 2018


Functional Characterization of a WWP1/Tiul1 Tumor-derived Mutant Reveals a Paradigm of Its Constitutive Activation in Human Cancer
journal, July 2015

  • Courivaud, Thomas; Ferrand, Nathalie; Elkhattouti, Abdelouahid
  • Journal of Biological Chemistry, Vol. 290, Issue 34
  • DOI: 10.1074/jbc.M115.642314

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

The -4 Phenylalanine Is Required for Substrate Ubiquitination Catalyzed by HECT Ubiquitin Ligases
journal, February 2004

  • Salvat, Catherine; Wang, Guangli; Dastur, Anahita
  • Journal of Biological Chemistry, Vol. 279, Issue 18
  • DOI: 10.1074/jbc.M312201200

Functional and Structural Characterization of Bub3·BubR1 Interactions Required for Spindle Assembly Checkpoint Signaling in Human Cells
journal, March 2016

  • Prinz, Florian; Puetter, Vera; Holton, Simon J.
  • Journal of Biological Chemistry, Vol. 291, Issue 21
  • DOI: 10.1074/jbc.M115.702142

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Optimization of protein samples for NMR using thermal shift assays
journal, March 2016

  • Kozak, Sandra; Lercher, Lukas; Karanth, Megha N.
  • Journal of Biomolecular NMR, Vol. 64, Issue 4
  • DOI: 10.1007/s10858-016-0027-z

NMRPipe: A multidimensional spectral processing system based on UNIX pipes
journal, November 1995

  • Delaglio, Frank; Grzesiek, Stephan; Vuister, GeertenW.
  • Journal of Biomolecular NMR, Vol. 6, Issue 3
  • DOI: 10.1007/BF00197809

Procedure for reductive methylation of protein to improve crystallizability
journal, July 2007


Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations
journal, April 2015

  • Kristariyanto, Yosua Adi; Choi, Soo-Youn; Rehman, Syed Arif Abdul
  • Biochemical Journal, Vol. 467, Issue 2
  • DOI: 10.1042/BJ20141502

Structure of the HECT domain of human WWP2
journal, September 2015

  • Gong, Wei; Zhang, Xiaodan; Zhang, Wen
  • Acta Crystallographica Section F Structural Biology Communications, Vol. 71, Issue 10
  • DOI: 10.1107/S2053230X1501554X

Assembly and Specific Recognition of K29- and K33-Linked Polyubiquitin
journal, April 2015


A Structural Element within the HUWE1 HECT Domain Modulates Self-ubiquitination and Substrate Ubiquitination Activities
journal, December 2009

  • Pandya, Renuka K.; Partridge, James R.; Love, Kerry Routenberg
  • Journal of Biological Chemistry, Vol. 285, Issue 8
  • DOI: 10.1074/jbc.M109.051805

IAP Antagonists Induce Autoubiquitination of c-IAPs, NF-κB Activation, and TNFα-Dependent Apoptosis
journal, November 2007