skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 17, 2020

Title: Understanding the Crystallographic Phase Relations in Alkali-Trihalogeno-Germanates in Terms of Ferroelectric or Antiferroelectric Arrangements of the Tetrahedral GeX 3 Units

Abstract

The alkali-trihalogeno-germanates AGeX 3 with A: Rb or Cs and X a halogen (I, Br, Cl) along with the corresponding stannates (ASnX 3) and plumbates (APbX 3) reflect a large variety of crystal structures, some of which are of the perovskite type. These materials, better known as “halide perovskites” have recently gained worldwide attention as promising photovoltaic and more broadly opto-electronic materials. Yet, their stability problems relative to the non-perovskite phases are a major issue. It is shown that some of the phase relations in these materials can be understood in terms of the relative orientation of the GeX 3 tetrahedral units, which is ferroelectric (FE) in the perovskite phase but antiferroelectric (AFE) in the competing monoclinic phase. Electrostatic dipole interactions favor the AFE phase and the additional bond formation favors the FE phase. The change in phase is accompanied by a large change in band gap.

Authors:
 [1];  [1]
  1. Case Western Reserve Univ., Cleveland, OH (United States)
Publication Date:
Research Org.:
Case Western Reserve Univ., Cleveland, OH (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1591755
Alternate Identifier(s):
OSTI ID: 1579594
Grant/Contract Number:  
SC0008933
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Electronic Materials
Additional Journal Information:
Journal Name: Advanced Electronic Materials; Journal ID: ISSN 2199-160X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; antiferroelectrics; dipoles; halide; ferroelectrics; perovskites

Citation Formats

Radha, Santosh Kumar, and Lambrecht, Walter R. L. Understanding the Crystallographic Phase Relations in Alkali-Trihalogeno-Germanates in Terms of Ferroelectric or Antiferroelectric Arrangements of the Tetrahedral GeX3 Units. United States: N. p., 2019. Web. doi:10.1002/aelm.201900887.
Radha, Santosh Kumar, & Lambrecht, Walter R. L. Understanding the Crystallographic Phase Relations in Alkali-Trihalogeno-Germanates in Terms of Ferroelectric or Antiferroelectric Arrangements of the Tetrahedral GeX3 Units. United States. doi:10.1002/aelm.201900887.
Radha, Santosh Kumar, and Lambrecht, Walter R. L. Tue . "Understanding the Crystallographic Phase Relations in Alkali-Trihalogeno-Germanates in Terms of Ferroelectric or Antiferroelectric Arrangements of the Tetrahedral GeX3 Units". United States. doi:10.1002/aelm.201900887.
@article{osti_1591755,
title = {Understanding the Crystallographic Phase Relations in Alkali-Trihalogeno-Germanates in Terms of Ferroelectric or Antiferroelectric Arrangements of the Tetrahedral GeX3 Units},
author = {Radha, Santosh Kumar and Lambrecht, Walter R. L.},
abstractNote = {The alkali-trihalogeno-germanates AGeX3 with A: Rb or Cs and X a halogen (I, Br, Cl) along with the corresponding stannates (ASnX3) and plumbates (APbX3) reflect a large variety of crystal structures, some of which are of the perovskite type. These materials, better known as “halide perovskites” have recently gained worldwide attention as promising photovoltaic and more broadly opto-electronic materials. Yet, their stability problems relative to the non-perovskite phases are a major issue. It is shown that some of the phase relations in these materials can be understood in terms of the relative orientation of the GeX3 tetrahedral units, which is ferroelectric (FE) in the perovskite phase but antiferroelectric (AFE) in the competing monoclinic phase. Electrostatic dipole interactions favor the AFE phase and the additional bond formation favors the FE phase. The change in phase is accompanied by a large change in band gap.},
doi = {10.1002/aelm.201900887},
journal = {Advanced Electronic Materials},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 17, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Kristallstrukturen und Phasentransformationen von Caesiumtrihalogenogermanaten(II) CsGeX3 (X = Cl, Br, I)
journal, February 1987

  • Thiele, Gerhard; Rotter, Heinz Wilhelm; Schmidt, Klaus Dieter
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 545, Issue 2
  • DOI: 10.1002/zaac.19875450217

Local Polar Fluctuations in Lead Halide Perovskite Crystals
journal, March 2017


Theory of Dipole Interaction in Crystals
journal, December 1946


Electronic band structure trends of perovskite halides: Beyond Pb and Sn to Ge and Si
journal, May 2016


Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3
journal, October 2013


Band Gaps and Stability of CsSiX 3 Halides
journal, February 2019

  • Radha, Santosh K.; Lambrecht, Walter R. L.
  • physica status solidi (a), Vol. 216, Issue 15
  • DOI: 10.1002/pssa.201800962

Die Kristallstrukturen und Phasentransformationen des tetramorphen RbGel3
journal, January 1989

  • Thiele, G.; Rotter, H. W.; Schmidt, K. D.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 571, Issue 1
  • DOI: 10.1002/zaac.19895710106

Quasiparticle Self-Consistent G W Theory
journal, June 2006


Zone-center phonons in yellow phase CsSnI 3
journal, July 2017


Ground state configurations of a simple cubic array of pseudo-spins s = 1/2 with anisotropic exchange between nearest neighbours
journal, January 1978


First-principles calculations of phonons and Raman spectra in monoclinic CsSnCl 3
journal, February 2015


Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
journal, October 2012


A Note on the Ground State in Antiferromagnetics
journal, March 1951


Perovskite solar cells: an emerging photovoltaic technology
journal, March 2015


Fusion of the LAPW and LMTO methods: The augmented plane wave plus muffin-tin orbital method
journal, March 2010


Quasiparticle self-consistent G W method: A basis for the independent-particle approximation
journal, October 2007


Die Kristallstrukturen und Phasentransformationen von RbGeBr3
journal, April 1988

  • Thiele, G.; Rotter, H. W.; Schmidt, K. D.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 559, Issue 1
  • DOI: 10.1002/zaac.19885590101

Lattice dynamics in perovskite halides CsSn X 3 with X = I ,   Br ,   Cl
journal, November 2014


Die Kristallstruktur yon RbGeCl3 / The Crystal Structure of RbGeCl3
journal, April 1978


Recipes for improper ferroelectricity in molecular perovskites
journal, June 2018


Structure and Bonding in SnWO 4 , PbWO 4 , and BiVO 4 :  Lone Pairs vs Inert Pairs
journal, May 2007

  • Stoltzfus, Matthew W.; Woodward, Patrick M.; Seshadri, Ram
  • Inorganic Chemistry, Vol. 46, Issue 10
  • DOI: 10.1021/ic061157g

CsSnI3 : Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions
journal, May 2012

  • Chung, In; Song, Jung-Hwan; Im, Jino
  • Journal of the American Chemical Society, Vol. 134, Issue 20, p. 8579-8587
  • DOI: 10.1021/ja301539s

Distortion modes in halide perovskites: To twist or to stretch, a matter of tolerance and lone pairs
journal, June 2018


Vibrational spectra and nonlinear optical coefficients of rhombohedral CsGe X 3 halide compounds with X = I , Br, Cl
journal, September 2016