skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on October 8, 2020

Title: Learning from the density to correct total energy and forces in first principle simulations

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Physics and Astronomy Department, Stony Brook University, Stony Brook, New York 11794-3800, USA and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-3800, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1591702
Grant/Contract Number:  
SC0001137; SC0019394
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Name: Journal of Chemical Physics Journal Volume: 151 Journal Issue: 14; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Dick, Sebastian, and Fernandez-Serra, Marivi. Learning from the density to correct total energy and forces in first principle simulations. United States: N. p., 2019. Web. doi:10.1063/1.5114618.
Dick, Sebastian, & Fernandez-Serra, Marivi. Learning from the density to correct total energy and forces in first principle simulations. United States. doi:10.1063/1.5114618.
Dick, Sebastian, and Fernandez-Serra, Marivi. Mon . "Learning from the density to correct total energy and forces in first principle simulations". United States. doi:10.1063/1.5114618.
@article{osti_1591702,
title = {Learning from the density to correct total energy and forces in first principle simulations},
author = {Dick, Sebastian and Fernandez-Serra, Marivi},
abstractNote = {},
doi = {10.1063/1.5114618},
journal = {Journal of Chemical Physics},
number = 14,
volume = 151,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 8, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions
journal, June 2018

  • Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5024577

wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials
journal, June 2018

  • Gastegger, M.; Schwiedrzik, L.; Bittermann, M.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019667

Towards exact molecular dynamics simulations with machine-learned force fields
journal, September 2018

  • Chmiela, Stefan; Sauceda, Huziel E.; Müller, Klaus-Robert
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06169-2

Deep learning for computational chemistry
journal, March 2017

  • Goh, Garrett B.; Hodas, Nathan O.; Vishnu, Abhinav
  • Journal of Computational Chemistry, Vol. 38, Issue 16
  • DOI: 10.1002/jcc.24764

One-dimensional vs. two-dimensional proton transport processes at solid–liquid zinc-oxide–water interfaces
journal, January 2019

  • Hellström, Matti; Quaranta, Vanessa; Behler, Jörg
  • Chemical Science, Vol. 10, Issue 4
  • DOI: 10.1039/c8sc03033b

Development of a “First Principles” Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient
journal, November 2013

  • Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 12
  • DOI: 10.1021/ct400863t

Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
journal, June 2015

  • Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00831

SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

Transferable Machine-Learning Model of the Electron Density
journal, December 2018


Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function
journal, December 2017

  • Reddy, Sandeep K.; Moberg, Daniel R.; Straight, Shelby C.
  • The Journal of Chemical Physics, Vol. 147, Issue 24
  • DOI: 10.1063/1.5006480

SchNetPack: A Deep Learning Toolbox For Atomistic Systems
journal, November 2018

  • Schütt, K. T.; Kessel, P.; Gastegger, M.
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 1
  • DOI: 10.1021/acs.jctc.8b00908

Development of a “First Principles” Water Potential with Flexible Monomers. II: Trimer Potential Energy Surface, Third Virial Coefficient, and Small Clusters
journal, March 2014

  • Babin, Volodymyr; Medders, Gregory R.; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 4
  • DOI: 10.1021/ct500079y

Solving the electronic structure problem with machine learning
journal, February 2019

  • Chandrasekaran, Anand; Kamal, Deepak; Batra, Rohit
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0162-7

Catalysis-Hub.org, an open electronic structure database for surface reactions
journal, May 2019


Optimization of an exchange-correlation density functional for water
journal, June 2016

  • Fritz, Michelle; Fernández-Serra, Marivi; Soler, José M.
  • The Journal of Chemical Physics, Vol. 144, Issue 22
  • DOI: 10.1063/1.4953081

Orientational Distribution of Free O-H Groups of Interfacial Water is Exponential
journal, December 2018


Free Energy Profile of NaCl in Water: First-Principles Molecular Dynamics with SCAN and ωB97X-V Exchange–Correlation Functionals
journal, January 2018


Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
journal, January 2018

  • Gómez-Bombarelli, Rafael; Wei, Jennifer N.; Duvenaud, David
  • ACS Central Science, Vol. 4, Issue 2
  • DOI: 10.1021/acscentsci.7b00572

sGDML: Constructing accurate and data efficient molecular force fields using machine learning
journal, July 2019

  • Chmiela, Stefan; Sauceda, Huziel E.; Poltavsky, Igor
  • Computer Physics Communications, Vol. 240
  • DOI: 10.1016/j.cpc.2019.02.007

Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
journal, April 2018


Ab initio theory and modeling of water
journal, September 2017

  • Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 41
  • DOI: 10.1073/pnas.1712499114

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures
journal, July 2011

  • Řezáč, Jan; Riley, Kevin E.; Hobza, Pavel
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 8
  • DOI: 10.1021/ct2002946

Nosé–Hoover chains: The canonical ensemble via continuous dynamics
journal, August 1992

  • Martyna, Glenn J.; Klein, Michael L.; Tuckerman, Mark
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463940

The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
journal, December 2015


The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water
journal, August 2014

  • DiStasio, Robert A.; Santra, Biswajit; Li, Zhaofeng
  • The Journal of Chemical Physics, Vol. 141, Issue 8
  • DOI: 10.1063/1.4893377

The SIESTA method for ab initio order- N materials simulation
journal, March 2002

  • Soler, José M.; Artacho, Emilio; Gale, Julian D.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 11
  • DOI: 10.1088/0953-8984/14/11/302

Van der Waals Density Functional for General Geometries
journal, June 2004


Bypassing the Kohn-Sham equations with machine learning
journal, October 2017


On Unitary Representations of the Inhomogeneous Lorentz Group
journal, January 1939

  • Wigner, E.
  • The Annals of Mathematics, Vol. 40, Issue 1
  • DOI: 10.2307/1968551

Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics
journal, May 2018

  • Deringer, Volker L.; Bernstein, Noam; Bartók, Albert P.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 11
  • DOI: 10.1021/acs.jpclett.8b00902

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
journal, January 2017

  • Smith, J. S.; Isayev, O.; Roitberg, A. E.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/c6sc05720a

A general purpose model for the condensed phases of water: TIP4P/2005
journal, December 2005

  • Abascal, J. L. F.; Vega, C.
  • The Journal of Chemical Physics, Vol. 123, Issue 23
  • DOI: 10.1063/1.2121687

Neural-network Kohn-Sham exchange-correlation potential and its out-of-training transferability
journal, June 2018

  • Nagai, Ryo; Akashi, Ryosuke; Sasaki, Shu
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5029279

The Alexandria library, a quantum-chemical database of molecular properties for force field development
journal, April 2018

  • Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David
  • Scientific Data, Vol. 5, Issue 1
  • DOI: 10.1038/sdata.2018.62

Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density
journal, March 2018

  • Seino, Junji; Kageyama, Ryo; Fujinami, Mikito
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5007230

Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks
journal, February 2016


Machine learning of accurate energy-conserving molecular force fields
journal, May 2017

  • Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603015

Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

A Critical Assessment of Two-Body and Three-Body Interactions in Water
journal, December 2012

  • Medders, Gregory R.; Babin, Volodymyr; Paesani, Francesco
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 2
  • DOI: 10.1021/ct300913g

Perspective: How good is DFT for water?
journal, April 2016

  • Gillan, Michael J.; Alfè, Dario; Michaelides, Angelos
  • The Journal of Chemical Physics, Vol. 144, Issue 13
  • DOI: 10.1063/1.4944633

Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces
journal, March 2019

  • Sauceda, Huziel E.; Chmiela, Stefan; Poltavsky, Igor
  • The Journal of Chemical Physics, Vol. 150, Issue 11
  • DOI: 10.1063/1.5078687