skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 13, 2020

Title: Nonisentropic Release of a Shocked Solid

Abstract

Here, we introduce molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We illustrate via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.

Authors:
 [1];  [1];  [1];  [2];  [3];  [2];  [4];  [2];  [5];  [5];  [2];  [2];  [2];  [1];  [2];  [5];  [2]; ORCiD logo [1]
  1. Univ. of Oxford (United Kingdom). Dept. of Physics, Clarendon Lab.
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Univ. of York (United Kingdom). York Plasma Inst.
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1583129
Grant/Contract Number:  
EP/J017256/1; EP/S025065/1; AC02-76SF00515; SF00515; SCW-1507; AC52-07NA27344; B609694; B595954
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 123; Journal Issue: 24; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Heighway, P. G., Sliwa, M., McGonegle, D., Wehrenberg, C., Bolme, C. A., Eggert, J., Higginbotham, A., Lazicki, A., Lee, H. J., Nagler, B., Park, H. -S., Rudd, R. E., Smith, R. F., Suggit, M. J., Swift, D., Tavella, F., Remington, B. A., and Wark, J. S. Nonisentropic Release of a Shocked Solid. United States: N. p., 2019. Web. doi:10.1103/PhysRevLett.123.245501.
Heighway, P. G., Sliwa, M., McGonegle, D., Wehrenberg, C., Bolme, C. A., Eggert, J., Higginbotham, A., Lazicki, A., Lee, H. J., Nagler, B., Park, H. -S., Rudd, R. E., Smith, R. F., Suggit, M. J., Swift, D., Tavella, F., Remington, B. A., & Wark, J. S. Nonisentropic Release of a Shocked Solid. United States. doi:10.1103/PhysRevLett.123.245501.
Heighway, P. G., Sliwa, M., McGonegle, D., Wehrenberg, C., Bolme, C. A., Eggert, J., Higginbotham, A., Lazicki, A., Lee, H. J., Nagler, B., Park, H. -S., Rudd, R. E., Smith, R. F., Suggit, M. J., Swift, D., Tavella, F., Remington, B. A., and Wark, J. S. Fri . "Nonisentropic Release of a Shocked Solid". United States. doi:10.1103/PhysRevLett.123.245501.
@article{osti_1583129,
title = {Nonisentropic Release of a Shocked Solid},
author = {Heighway, P. G. and Sliwa, M. and McGonegle, D. and Wehrenberg, C. and Bolme, C. A. and Eggert, J. and Higginbotham, A. and Lazicki, A. and Lee, H. J. and Nagler, B. and Park, H. -S. and Rudd, R. E. and Smith, R. F. and Suggit, M. J. and Swift, D. and Tavella, F. and Remington, B. A. and Wark, J. S.},
abstractNote = {Here, we introduce molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We illustrate via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.},
doi = {10.1103/PhysRevLett.123.245501},
journal = {Physical Review Letters},
number = 24,
volume = 123,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 13, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Equation of State of Metals from Shock Wave Measurements
journal, March 1955


Shock and release behavior in porous 1100 aluminum
journal, January 1975

  • Asay, J. R.
  • Journal of Applied Physics, Vol. 46, Issue 1
  • DOI: 10.1063/1.321319

Adiabatic release measurements in aluminum from 240-to500-GPa states on the principal Hugoniot
journal, April 2005

  • Knudson, M. D.; Asay, J. R.; Deeney, C.
  • Journal of Applied Physics, Vol. 97, Issue 7
  • DOI: 10.1063/1.1863421

Quantum molecular dynamics simulation of shock-wave experiments in aluminum
journal, June 2014

  • Minakov, D. V.; Levashov, P. R.; Khishchenko, K. V.
  • Journal of Applied Physics, Vol. 115, Issue 22
  • DOI: 10.1063/1.4882299

Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime
journal, June 2015


Hugoniot temperatures and melting of tantalum under shock compression determined by optical pyrometry
journal, August 2009

  • Dai, Chengda; Hu, Jianbo; Tan, Hua
  • Journal of Applied Physics, Vol. 106, Issue 4
  • DOI: 10.1063/1.3204941

Laser-induced shock compression of monocrystalline copper: characterization and analysis
journal, March 2003


The strength of single crystal copper under uniaxial shock compression at 100 GPa
journal, January 2010


Strength of Shock-Loaded Single-Crystal Tantalum [100] Determined using In Situ Broadband X-Ray Laue Diffraction
journal, March 2013


Ultrahigh Strength in Nanocrystalline Materials Under Shock Loading
journal, September 2005


Shock deformation of face-centred-cubic metals on subnanosecond timescales
journal, September 2006

  • Bringa, E. M.; Rosolankova, K.; Rudd, R. E.
  • Nature Materials, Vol. 5, Issue 10
  • DOI: 10.1038/nmat1735

Shock and release temperatures in molybdenum: Experiment and theory
journal, August 2007


A mechanism for dislocation generation in shock-wave deformation
journal, January 1978


Problems of plastic gliding
journal, January 1940


Orientation Dependence in Molecular Dynamics Simulations of Shocked Single Crystals
journal, June 2000


Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals
journal, November 2008


In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics
journal, October 2017

  • Wehrenberg, C. E.; McGonegle, D.; Bolme, C.
  • Nature, Vol. 550, Issue 7677
  • DOI: 10.1038/nature24061

The Latent Energy Remaining in a Metal after Cold Working
journal, January 1934

  • Taylor, G. I.; Quinney, H.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 143, Issue 849
  • DOI: 10.1098/rspa.1934.0004

A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals
journal, March 2000

  • Rosakis, P.; Rosakis, A. J.; Ravichandran, G.
  • Journal of the Mechanics and Physics of Solids, Vol. 48, Issue 3
  • DOI: 10.1016/S0022-5096(99)00048-4

The stored energy of cold work
journal, January 1973


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations
journal, October 2013


Equation of state of tantalum to 174 GPa
journal, April 1999


Equations of state of six metals above 94 GPa
journal, September 2004


Shock compression of aluminum, copper, and tantalum
journal, May 1981

  • Mitchell, A. C.; Nellis, W. J.
  • Journal of Applied Physics, Vol. 52, Issue 5
  • DOI: 10.1063/1.329160

High Melting Points of Tantalum in a Laser-Heated Diamond Anvil Cell
journal, June 2010


Shock-Wave Compressions of Twenty-Seven Metals. Equations of State of Metals
journal, October 1957

  • Walsh, John M.; Rice, Melvin H.; McQueen, Robert G.
  • Physical Review, Vol. 108, Issue 2
  • DOI: 10.1103/PhysRev.108.196

Thermal equation of state of tantalum
journal, May 2001


Ab initio refinement of the thermal equation of state for bcc tantalum: the effect of bonding on anharmonicity
journal, February 2009


Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation
journal, February 2005


VORO++ : A three-dimensional Voronoi cell library in C++
journal, December 2009

  • Rycroft, Chris H.
  • Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 19, Issue 4
  • DOI: 10.1063/1.3215722

High Strain Rates Effects in Quasi-Isentropic Compression of Solids
conference, January 2009

  • Ravelo, Ramon; Holian, Brad Lee; Germann, Timothy C.
  • SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3295269

Prediction of Debye-Scherrer diffraction patterns in arbitrarily strained samples
journal, May 2014

  • Higginbotham, Andrew; McGonegle, David
  • Journal of Applied Physics, Vol. 115, Issue 17
  • DOI: 10.1063/1.4874656

The role of defects on thermophysical properties: Thermal expansion of V, Nb, Ta, Mo and W
journal, July 1998


Real time synchrotron x-ray diffraction measurements to determine material strength of shocked single crystals following compression and release
journal, August 2009

  • Turneaure, Stefan J.; Gupta, Y. M.
  • Journal of Applied Physics, Vol. 106, Issue 3
  • DOI: 10.1063/1.3187929

Extracting dislocations and non-dislocation crystal defects from atomistic simulation data
journal, September 2010

  • Stukowski, Alexander; Albe, Karsten
  • Modelling and Simulation in Materials Science and Engineering, Vol. 18, Issue 8
  • DOI: 10.1088/0965-0393/18/8/085001

Automated identification and indexing of dislocations in crystal interfaces
journal, October 2012

  • Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios
  • Modelling and Simulation in Materials Science and Engineering, Vol. 20, Issue 8
  • DOI: 10.1088/0965-0393/20/8/085007

Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 43, Issue 11
  • DOI: 10.1063/1.1660986

Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004

  • Celliers, P. M.; Bradley, D. K.; Collins, G. W.
  • Review of Scientific Instruments, Vol. 75, Issue 11
  • DOI: 10.1063/1.1807008

Optical technique for determining rarefaction wave velocities at very high pressures
journal, February 1982

  • McQueen, R. G.; Hopson, J. W.; Fritz, J. N.
  • Review of Scientific Instruments, Vol. 53, Issue 2
  • DOI: 10.1063/1.1136937

First-principles thermoelasticity of transition metals at high pressure: Tantalum prototype in the quasiharmonic limit
journal, August 2006


Resistance, Emissivities and Melting Point of Tantalum
journal, April 1939