skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biomimetic O 2 adsorption in an iron metal–organic framework for air separation

Abstract

Bio-inspired motifs for gas binding and small molecule activation can be used to design more selective adsorbents for gas separation applications. Here, we report an iron metal–organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), that binds O2 in a manner similar to hemoglobin and therefore results in highly selective O2 binding. As confirmed by gas adsorption studies and Mössbauer and infrared spectroscopy data, the exposed iron sites in the framework reversibly adsorb substantial amounts of O2 at low temperatures by converting between high-spin, square-pyramidal Fe(II) centers in the activated material to low-spin, octahedral Fe(III)–superoxide sites upon gas binding. This change in both oxidation state and spin state observed in Fe-BTTri leads to selective and readily reversible O2 binding, with the highest reported O2/N2 selectivity for any iron-based framework.

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Department of Chemistry, University of California, Berkeley, USA
  2. Department of Chemistry, University of California, Berkeley, USA, Department of Chemical Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1582680
Alternate Identifier(s):
OSTI ID: 1760220
Grant/Contract Number:  
SC0019992; AC02-06CH11357; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Chemical Science
Additional Journal Information:
Journal Name: Chemical Science Journal Volume: 11 Journal Issue: 6; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Reed, Douglas A., Xiao, Dianne J., Jiang, Henry Z. H., Chakarawet, Khetpakorn, Oktawiec, Julia, and Long, Jeffrey R. Biomimetic O 2 adsorption in an iron metal–organic framework for air separation. United Kingdom: N. p., 2020. Web. doi:10.1039/C9SC06047B.
Reed, Douglas A., Xiao, Dianne J., Jiang, Henry Z. H., Chakarawet, Khetpakorn, Oktawiec, Julia, & Long, Jeffrey R. Biomimetic O 2 adsorption in an iron metal–organic framework for air separation. United Kingdom. doi:10.1039/C9SC06047B.
Reed, Douglas A., Xiao, Dianne J., Jiang, Henry Z. H., Chakarawet, Khetpakorn, Oktawiec, Julia, and Long, Jeffrey R. Wed . "Biomimetic O 2 adsorption in an iron metal–organic framework for air separation". United Kingdom. doi:10.1039/C9SC06047B.
@article{osti_1582680,
title = {Biomimetic O 2 adsorption in an iron metal–organic framework for air separation},
author = {Reed, Douglas A. and Xiao, Dianne J. and Jiang, Henry Z. H. and Chakarawet, Khetpakorn and Oktawiec, Julia and Long, Jeffrey R.},
abstractNote = {Bio-inspired motifs for gas binding and small molecule activation can be used to design more selective adsorbents for gas separation applications. Here, we report an iron metal–organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), that binds O2 in a manner similar to hemoglobin and therefore results in highly selective O2 binding. As confirmed by gas adsorption studies and Mössbauer and infrared spectroscopy data, the exposed iron sites in the framework reversibly adsorb substantial amounts of O2 at low temperatures by converting between high-spin, square-pyramidal Fe(II) centers in the activated material to low-spin, octahedral Fe(III)–superoxide sites upon gas binding. This change in both oxidation state and spin state observed in Fe-BTTri leads to selective and readily reversible O2 binding, with the highest reported O2/N2 selectivity for any iron-based framework.},
doi = {10.1039/C9SC06047B},
journal = {Chemical Science},
number = 6,
volume = 11,
place = {United Kingdom},
year = {2020},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/C9SC06047B

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The mechanism of the poisoning of ammonia synthesis catalysts by oxygenates O2, CO and H2O: an in situ method for active surface determination
journal, January 1994

  • Waugh, K. C.; Butler, D.; Hayden, B. E.
  • Catalysis Letters, Vol. 24, Issue 1-2
  • DOI: 10.1007/BF00807390

Scorpionate-Type Coordination in MFU-4 l Metal-Organic Frameworks: Small-Molecule Binding and Activation upon the Thermally Activated Formation of Open Metal Sites
journal, May 2014

  • Denysenko, Dmytro; Grzywa, Maciej; Jelic, Jelena
  • Angewandte Chemie International Edition, Vol. 53, Issue 23
  • DOI: 10.1002/anie.201310004

A review of air separation technologies and their integration with energy conversion processes
journal, May 2001


Reversible CO Scavenging via Adsorbate-Dependent Spin State Transitions in an Iron(II)–Triazolate Metal–Organic Framework
journal, April 2016

  • Reed, Douglas A.; Xiao, Dianne J.; Gonzalez, Miguel I.
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.6b00248

Making and Breaking the Dioxygen O−O Bond:  New Insights from Studies of Synthetic Copper Complexes
journal, June 1997

  • Tolman, William B.
  • Accounts of Chemical Research, Vol. 30, Issue 6
  • DOI: 10.1021/ar960052m

Metal-Organic Frameworks as Biomimetic Catalysts
journal, October 2013


Highly-Selective and Reversible O2 Binding in Cr3(1,3,5-benzenetricarboxylate)2
journal, June 2010

  • Murray, Leslie J.; Dinca, Mircea; Yano, Junko
  • Journal of the American Chemical Society, Vol. 132, Issue 23, p. 7856-7857
  • DOI: 10.1021/ja1027925

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Hybrid porous solids past, present, future
journal, January 2008

  • Férey, Gérard
  • Chem. Soc. Rev., Vol. 37, Issue 1, p. 191-214
  • DOI: 10.1039/B618320B

Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods
journal, January 2010

  • Sumida, Kenji; Horike, Satoshi; Kaye, Steven S.
  • Chemical Science, Vol. 1, Issue 2, p. 184-191
  • DOI: 10.1039/c0sc00179a

Low Temperature Syntheses and Reactivity of Cu 2 O 2 Active-Site Models
journal, July 2015

  • Citek, Cooper; Herres-Pawlis, Sonja; Stack, T. Daniel P.
  • Accounts of Chemical Research, Vol. 48, Issue 8
  • DOI: 10.1021/acs.accounts.5b00220

Isolated Fe Sites in Metal Organic Frameworks Catalyze the Direct Conversion of Methane to Methanol
journal, May 2018

  • Osadchii, Dmitrii Y.; Olivos-Suarez, Alma I.; Szécsényi, Ágnes
  • ACS Catalysis, Vol. 8, Issue 6
  • DOI: 10.1021/acscatal.8b00505

Oxygen binding to iron porphyrins
journal, November 1975

  • Collman, James P.; Brauman, John I.; Suslick, Kenneth S.
  • Journal of the American Chemical Society, Vol. 97, Issue 24
  • DOI: 10.1021/ja00857a050

Thermodynamics of oxygen binding in natural and synthetic dioxygen complexes
journal, April 1984

  • Niederhoffer, Eric C.; Timmons, James H.; Martell, Arthur E.
  • Chemical Reviews, Vol. 84, Issue 2
  • DOI: 10.1021/cr00060a003

Mössbauer spectroscopy of hemoglobin model compounds: Evidence for conformational excitation
journal, December 1975

  • Spartalian, K.; Lang, G.; Collman, James P.
  • The Journal of Chemical Physics, Vol. 63, Issue 12
  • DOI: 10.1063/1.431343

Selective Binding of O 2 over N 2 in a Redox–Active Metal–Organic Framework with Open Iron(II) Coordination Sites
journal, September 2011

  • Bloch, Eric D.; Murray, Leslie J.; Queen, Wendy L.
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja205976v

Pore Environment Effects on Catalytic Cyclohexane Oxidation in Expanded Fe 2 (dobdc) Analogues
journal, October 2016

  • Xiao, Dianne J.; Oktawiec, Julia; Milner, Phillip J.
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b08417

A Five-Coordinate Heme Dioxygen Adduct Isolated within a Metal–Organic Framework
journal, November 2014

  • Anderson, John S.; Gallagher, Audrey T.; Mason, Jarad A.
  • Journal of the American Chemical Society, Vol. 136, Issue 47
  • DOI: 10.1021/ja5103103

Hydrogen Storage and Selective, Reversible O 2 Adsorption in a Metal-Organic Framework with Open Chromium(II) Sites
journal, June 2016

  • Bloch, Eric D.; Queen, Wendy L.; Hudson, Matthew R.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201602950

Synthetic oxygen carriers related to biological systems
journal, April 1979

  • Jones, Robert D.; Summerville, David A.; Basolo, Fred.
  • Chemical Reviews, Vol. 79, Issue 2
  • DOI: 10.1021/cr60318a002

1.25 Å Resolution Crystal Structures of Human Haemoglobin in the Oxy, Deoxy and Carbonmonoxy Forms
journal, July 2006

  • Park, Sam-Yong; Yokoyama, Takeshi; Shibayama, Naoya
  • Journal of Molecular Biology, Vol. 360, Issue 3
  • DOI: 10.1016/j.jmb.2006.05.036

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks
journal, March 2015

  • McDonald, Thomas M.; Mason, Jarad A.; Kong, Xueqian
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14327

Dioxygen binding at a four-coordinate cobaltous porphyrin site in a metal–organic framework: structural, EPR, and O 2 adsorption analysis
journal, January 2016

  • Gallagher, Audrey T.; Kelty, Margaret L.; Park, Jesse G.
  • Inorganic Chemistry Frontiers, Vol. 3, Issue 4
  • DOI: 10.1039/C5QI00275C

Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

A structurally-characterized peroxomanganese( iv ) porphyrin from reversible O 2 binding within a metal–organic framework
journal, January 2018

  • Gallagher, Audrey T.; Lee, Jung Yoon; Kathiresan, Venkatesan
  • Chemical Science, Vol. 9, Issue 6
  • DOI: 10.1039/C7SC03739B

Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M 2 (dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)
journal, January 2014

  • Queen, Wendy L.; Hudson, Matthew R.; Bloch, Eric D.
  • Chem. Sci., Vol. 5, Issue 12
  • DOI: 10.1039/C4SC02064B

Cooperativity in O2 binding to iron porphyrins.
journal, March 1978

  • Collman, J. P.; Brauman, J. I.; Rose, E.
  • Proceedings of the National Academy of Sciences, Vol. 75, Issue 3
  • DOI: 10.1073/pnas.75.3.1052

Functional Porous Coordination Polymers
journal, April 2004

  • Kitagawa, Susumu; Kitaura, Ryo; Noro, Shin-ichiro
  • Angewandte Chemie International Edition, Vol. 43, Issue 18, p. 2334-2375
  • DOI: 10.1002/anie.200300610

Mössbauer studies on O 2 and CO binding to the heme iron in myoglobin
journal, July 1981

  • Maeda, Y.; Harami, T.; Morita, Y.
  • The Journal of Chemical Physics, Vol. 75, Issue 1
  • DOI: 10.1063/1.441790

Design and synthesis of an exceptionally stable and highly porous metal-organic framework
journal, November 1999

  • Li, Hailian; Eddaoudi, Mohamed; M., O'Keeffe
  • Nature, Vol. 402, Issue 6759, p. 276-279
  • DOI: 10.1038/46248

A Structural Mimic of Carbonic Anhydrase in a Metal-Organic Framework
journal, December 2018


Bioinspired Metal–Organic Framework for Trace CO 2 Capture
journal, September 2018

  • Bien, Caitlin E.; Chen, Kai K.; Chien, Szu-Chia
  • Journal of the American Chemical Society, Vol. 140, Issue 40
  • DOI: 10.1021/jacs.8b06109

Synthetic Models of the Deoxy and Oxy Forms of the Non-Heme Dioxygen-Binding Protein Hemerythrin
journal, October 1998

  • Mizoguchi, Tadashi J.; Lippard, Stephen J.
  • Journal of the American Chemical Society, Vol. 120, Issue 42
  • DOI: 10.1021/ja982417z

On the bonding of FeO2 in hemoglobin and related dioxygen complexes.
journal, May 1977

  • Reed, C. A.; Cheung, S. K.
  • Proceedings of the National Academy of Sciences, Vol. 74, Issue 5
  • DOI: 10.1073/pnas.74.5.1780

Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal–Organic Frameworks
journal, February 2018

  • Gonzalez, Miguel I.; Kapelewski, Matthew T.; Bloch, Eric D.
  • Journal of the American Chemical Society, Vol. 140, Issue 9
  • DOI: 10.1021/jacs.7b13825

A spin transition mechanism for cooperative adsorption in metal–organic frameworks
journal, September 2017

  • Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia
  • Nature, Vol. 550, Issue 7674
  • DOI: 10.1038/nature23674

Selective, Tunable O 2 Binding in Cobalt(II)–Triazolate/Pyrazolate Metal–Organic Frameworks
journal, May 2016

  • Xiao, Dianne J.; Gonzalez, Miguel I.; Darago, Lucy E.
  • Journal of the American Chemical Society, Vol. 138, Issue 22
  • DOI: 10.1021/jacs.6b03680

Elucidation of the mode of binding of oxygen to iron in oxyhemoglobin by infrared spectroscopy
journal, November 1973

  • Barlow, C. H.; Maxwell, J. C.; Wallace, W. J.
  • Biochemical and Biophysical Research Communications, Vol. 55, Issue 1
  • DOI: 10.1016/S0006-291X(73)80063-4

    Works referencing / citing this record:

    Self-adjusting binding pockets enhance H 2 and CH 4 adsorption in a uranium-based metal–organic framework
    journal, January 2020

    • Halter, Dominik P.; Klein, Ryan A.; Boreen, Michael A.
    • Chemical Science
    • DOI: 10.1039/d0sc02394a

    Structure and redox tuning of gas adsorption properties in calixarene-supported Fe( ii )-based porous cages
    journal, January 2020

    • Deegan, Meaghan M.; Ahmed, Tonia S.; Yap, Glenn P. A.
    • Chemical Science, Vol. 11, Issue 20
    • DOI: 10.1039/d0sc01833c