DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Patterned probes for high precision 4D-STEM bragg measurements

Abstract

Nanoscale strain mapping by four-dimensional scanning transmission electron microscopy (4D-STEM) relies on determining the precise locations of Bragg-scattered electrons in a sequence of diffraction patterns, a task which is complicated by dynamical scattering, inelastic scattering, and shot noise. These features hinder accurate automated computational detection and position measurement of the diffracted disks, limiting the precision of measurements of local deformation. Here, we investigate the use of patterned probes to improve the precision of strain mapping. We imprint a "bullseye" pattern onto the probe, by using a binary mask in the probe-forming aperture, to improve the robustness of the peak finding algorithm to intensity modulations inside the diffracted disks. We show that this imprinting leads to substantially improved strain-mapping precision at the expense of a slight decrease in spatial resolution. In experiments on an unstrained silicon reference sample, we observe an improvement in strain measurement precision from 2.7% of the reciprocal lattice vectors with standard probes to 0.3% using bullseye probes for a thin sample, and an improvement from 4.7% to 0.8% for a thick sample. Additionally, we use multislice simulations to explore how sample thickness and electron dose limit the attainable accuracy and precision for 4D-STEM strain measurements.

Authors:
 [1];  [2];  [2];  [2];  [2];  [3];  [2]
  1. Univ. of California, Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Center for Electron Microscopy
  3. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Center for Electron Microscopy
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1582628
Alternate Identifier(s):
OSTI ID: 1597162
Grant/Contract Number:  
AC02-05CH11231; DMR 1548924
Resource Type:
Accepted Manuscript
Journal Name:
Ultramicroscopy
Additional Journal Information:
Journal Volume: 209; Journal Issue: C; Journal ID: ISSN 0304-3991
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; scanning transmission electron microscopy; strain mapping; electron diffraction; nanobeam electron diffraction; 4D-STEM

Citation Formats

Zeltmann, Steven E., Müller, Alexander, Bustillo, Karen C., Savitzky, Benjamin, Hughes, Lauren, Minor, Andrew M., and Ophus, Colin. Patterned probes for high precision 4D-STEM bragg measurements. United States: N. p., 2019. Web. doi:10.1016/j.ultramic.2019.112890.
Zeltmann, Steven E., Müller, Alexander, Bustillo, Karen C., Savitzky, Benjamin, Hughes, Lauren, Minor, Andrew M., & Ophus, Colin. Patterned probes for high precision 4D-STEM bragg measurements. United States. https://doi.org/10.1016/j.ultramic.2019.112890
Zeltmann, Steven E., Müller, Alexander, Bustillo, Karen C., Savitzky, Benjamin, Hughes, Lauren, Minor, Andrew M., and Ophus, Colin. Tue . "Patterned probes for high precision 4D-STEM bragg measurements". United States. https://doi.org/10.1016/j.ultramic.2019.112890. https://www.osti.gov/servlets/purl/1582628.
@article{osti_1582628,
title = {Patterned probes for high precision 4D-STEM bragg measurements},
author = {Zeltmann, Steven E. and Müller, Alexander and Bustillo, Karen C. and Savitzky, Benjamin and Hughes, Lauren and Minor, Andrew M. and Ophus, Colin},
abstractNote = {Nanoscale strain mapping by four-dimensional scanning transmission electron microscopy (4D-STEM) relies on determining the precise locations of Bragg-scattered electrons in a sequence of diffraction patterns, a task which is complicated by dynamical scattering, inelastic scattering, and shot noise. These features hinder accurate automated computational detection and position measurement of the diffracted disks, limiting the precision of measurements of local deformation. Here, we investigate the use of patterned probes to improve the precision of strain mapping. We imprint a "bullseye" pattern onto the probe, by using a binary mask in the probe-forming aperture, to improve the robustness of the peak finding algorithm to intensity modulations inside the diffracted disks. We show that this imprinting leads to substantially improved strain-mapping precision at the expense of a slight decrease in spatial resolution. In experiments on an unstrained silicon reference sample, we observe an improvement in strain measurement precision from 2.7% of the reciprocal lattice vectors with standard probes to 0.3% using bullseye probes for a thin sample, and an improvement from 4.7% to 0.8% for a thick sample. Additionally, we use multislice simulations to explore how sample thickness and electron dose limit the attainable accuracy and precision for 4D-STEM strain measurements.},
doi = {10.1016/j.ultramic.2019.112890},
journal = {Ultramicroscopy},
number = C,
volume = 209,
place = {United States},
year = {Tue Nov 12 00:00:00 EST 2019},
month = {Tue Nov 12 00:00:00 EST 2019}
}

Journal Article:

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Sample size effects on the large strain bursts in submicron aluminum pillars
journal, February 2012

  • Wang, Zhang-Jie; Li, Qing-Jie; Shan, Zhi-Wei
  • Applied Physics Letters, Vol. 100, Issue 7
  • DOI: 10.1063/1.3681582

Strain scaling for CMOS
journal, February 2014

  • Bedell, S. W.; Khakifirooz, A.; Sadana, D. K.
  • MRS Bulletin, Vol. 39, Issue 2
  • DOI: 10.1557/mrs.2014.5

Elastic strain engineering for unprecedented materials properties
journal, February 2014


Coherent X-ray diffraction imaging of strain at the nanoscale
journal, April 2009

  • Robinson, Ian; Harder, Ross
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2400

An efficient, simple, and precise way to map strain with nanometer resolution in semiconductor devices
journal, March 2010

  • Koch, Christoph T.; Özdöl, V. Burak; van Aken, Peter A.
  • Applied Physics Letters, Vol. 96, Issue 9
  • DOI: 10.1063/1.3337090

Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope
journal, January 2016


Direct measurement of local lattice distortions in strained layer structures by HREM
journal, February 1993


The Peak Pairs algorithm for strain mapping from HRTEM images
journal, November 2007


Quantitative measurement of displacement and strain fields from HREM micrographs
journal, August 1998


Higher Order Laue Zone Effects in Electron Diffraction and their Use in Lattice Parameter Determination
journal, May 1977

  • Jones, P. M.; Rackham, G. M.; Steeds, J. W.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 354, Issue 1677
  • DOI: 10.1098/rspa.1977.0064

Direct strain measurement in a 65nm node strained silicon transistor by convergent-beam electron diffraction
journal, October 2006

  • Zhang, Peng; Istratov, Andrei A.; Weber, Eicke R.
  • Applied Physics Letters, Vol. 89, Issue 16
  • DOI: 10.1063/1.2362978

Strain measurements by convergent-beam electron diffraction: The importance of stress relaxation in lamella preparations
journal, July 2004

  • Clément, L.; Pantel, R.; Kwakman, L. F. Tz.
  • Applied Physics Letters, Vol. 85, Issue 4
  • DOI: 10.1063/1.1774275

Observing and measuring strain in nanostructures and devices with transmission electron microscopy
journal, February 2014

  • Hÿtch, Martin J.; Minor, Andrew M.
  • MRS Bulletin, Vol. 39, Issue 2
  • DOI: 10.1557/mrs.2014.4

Confirmation of the Domino-Cascade Model by LiFePO 4 /FePO 4 Precession Electron Diffraction
journal, October 2011

  • Brunetti, G.; Robert, D.; Bayle-Guillemaud, P.
  • Chemistry of Materials, Vol. 23, Issue 20
  • DOI: 10.1021/cm201783z

Orientation mapping of semicrystalline polymers using scanning electron nanobeam diffraction
journal, September 2016


Interpretation of angular symmetries in electron nanodiffraction patterns from thin amorphous specimens
journal, July 2015

  • Liu, Amelia C. Y.; Lumpkin, Gregory R.; Petersen, Timothy C.
  • Acta Crystallographica Section A Foundations and Advances, Vol. 71, Issue 5
  • DOI: 10.1107/S2053273315011845

Position averaged convergent beam electron diffraction: Theory and applications
journal, January 2010


Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM
journal, October 2012

  • Zhu, Guo-zhen; Radtke, Guillaume; Botton, Gianluigi A.
  • Nature, Vol. 490, Issue 7420
  • DOI: 10.1038/nature11563

Strain relaxation of strained-Si layers on SiGe-on-insulator (SGOI) structures after mesa isolation
journal, March 2004


Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping
journal, May 2017


Local nanoscale strain mapping of a metallic glass during in situ testing
journal, April 2018

  • Gammer, Christoph; Ophus, Colin; Pekin, Thomas C.
  • Applied Physics Letters, Vol. 112, Issue 17
  • DOI: 10.1063/1.5025686

In situ nanobeam electron diffraction strain mapping of planar slip in stainless steel
journal, March 2018


Strain Mapping of Two-Dimensional Heterostructures with Subpicometer Precision
journal, May 2018


Improved precision in strain measurement using nanobeam electron diffraction
journal, September 2009

  • Béché, A.; Rouvière, J. L.; Clément, L.
  • Applied Physics Letters, Vol. 95, Issue 12
  • DOI: 10.1063/1.3224886

Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping
journal, June 2019

  • Guzzinati, Giulio; Ghielens, Wannes; Mahr, Christoph
  • Applied Physics Letters, Vol. 114, Issue 24
  • DOI: 10.1063/1.5096245

Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction
journal, November 2015


Optimization of NBED simulations for disc-detection measurements
journal, October 2017


The scattering of electrons by atoms and crystals. I. A new theoretical approach
journal, October 1957


Improved strain precision with high spatial resolution using nanobeam precession electron diffraction
journal, December 2013

  • Rouviere, Jean-Luc; Béché, Armand; Martin, Yannick
  • Applied Physics Letters, Vol. 103, Issue 24
  • DOI: 10.1063/1.4829154

Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device
journal, November 2012

  • Müller, Knut; Ryll, Henning; Ordavo, Ivan
  • Applied Physics Letters, Vol. 101, Issue 21
  • DOI: 10.1063/1.4767655

Improving Accuracy and Precision of Strain Analysis by Energy-Filtered Nanobeam Electron Diffraction
journal, January 2012

  • Hähnel, Angelika; Reiche, Manfred; Moutanabbir, Oussama
  • Microscopy and Microanalysis, Vol. 18, Issue 1
  • DOI: 10.1017/S1431927611012657

Measuring temperature-dependent thermal diffuse scattering using scanning transmission electron microscopy
journal, December 2018

  • Wehmeyer, Geoff; Bustillo, Karen C.; Minor, Andrew M.
  • Applied Physics Letters, Vol. 113, Issue 25
  • DOI: 10.1063/1.5066111

A fast image simulation algorithm for scanning transmission electron microscopy
journal, May 2017


Efficient subpixel image registration algorithms
journal, January 2008

  • Guizar-Sicairos, Manuel; Thurman, Samuel T.; Fienup, James R.
  • Optics Letters, Vol. 33, Issue 2
  • DOI: 10.1364/OL.33.000156

Fast computation of Lyot-style coronagraph propagation
journal, January 2007

  • Soummer, R.; Pueyo, L.; Sivaramakrishnan, A.
  • Optics Express, Vol. 15, Issue 24
  • DOI: 10.1364/OE.15.015935

A survey of cross-validation procedures for model selection
journal, January 2010

  • Arlot, Sylvain; Celisse, Alain
  • Statistics Surveys, Vol. 4, Issue 0
  • DOI: 10.1214/09-SS054

Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device
journal, November 2012

  • Müller, Knut; Ryll, Henning; Ordavo, Ivan
  • Applied Physics Letters, Vol. 101, Issue 21
  • DOI: 10.1063/1.4767655

Strain Imaging of Nanoscale Semiconductor Heterostructures with X-Ray Bragg Projection Ptychography
journal, April 2014


Works referencing / citing this record:

LiberTEM/LiberTEM: 0.5.1
software, August 2020


LiberTEM/LiberTEM: 0.5.0
software, April 2020


Lattice strain measurement of core@shell electrocatalysts with 4D-STEM nanobeam electron diffraction
text, January 2020


Multibeam Electron Diffraction
text, January 2020