skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on January 12, 2021

Title: A cyber‐secure control‐detector architecture for nonlinear processes

Authors:
 [1];  [1]; ORCiD logo [2]
  1. Department of Chemical and Biomolecular EngineeringUniversity of California Los Angeles California
  2. Department of Chemical and Biomolecular EngineeringUniversity of California Los Angeles California, Department of Electrical and Computer EngineeringUniversity of California Los Angeles California
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1582486
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
AIChE Journal
Additional Journal Information:
Journal Name: AIChE Journal; Journal ID: ISSN 0001-1541
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United States
Language:
English

Citation Formats

Chen, Scarlett, Wu, Zhe, and Christofides, Panagiotis D. A cyber‐secure control‐detector architecture for nonlinear processes. United States: N. p., 2020. Web. doi:10.1002/aic.16907.
Chen, Scarlett, Wu, Zhe, & Christofides, Panagiotis D. A cyber‐secure control‐detector architecture for nonlinear processes. United States. doi:10.1002/aic.16907.
Chen, Scarlett, Wu, Zhe, and Christofides, Panagiotis D. Mon . "A cyber‐secure control‐detector architecture for nonlinear processes". United States. doi:10.1002/aic.16907.
@article{osti_1582486,
title = {A cyber‐secure control‐detector architecture for nonlinear processes},
author = {Chen, Scarlett and Wu, Zhe and Christofides, Panagiotis D.},
abstractNote = {},
doi = {10.1002/aic.16907},
journal = {AIChE Journal},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 12, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Attacks against process control systems: risk assessment, detection, and response
conference, January 2011

  • Cárdenas, Alvaro A.; Amin, Saurabh; Lin, Zong-Syun
  • Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security - ASIACCS '11
  • DOI: 10.1145/1966913.1966959

Behaviour-Based Attack Detection and Classification in Cyber Physical Systems Using Machine Learning
conference, January 2016

  • Junejo, Khurum Nazir; Goh, Jonathan
  • Proceedings of the 2nd ACM International Workshop on Cyber-Physical System Security - CPSS '16
  • DOI: 10.1145/2899015.2899016

A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection
journal, July 2016


Bringing new technologies and approaches to the operation and control of chemical process systems
journal, March 2019

  • Rawlings, James B.; Maravelias, Christos T.
  • AIChE Journal, Vol. 65, Issue 6
  • DOI: 10.1002/aic.16615

Machine‐learning‐based predictive control of nonlinear processes. Part II: Computational implementation
journal, July 2019

  • Wu, Zhe; Tran, Anh; Rincon, David
  • AIChE Journal, Vol. 65, Issue 11
  • DOI: 10.1002/aic.16734

A Cumulative Sum-Based Fault Detector for Power System Relaying Application
journal, January 2008

  • Mohanty, S. R.; Pradhan, A. K.; Routray, A.
  • IEEE Transactions on Power Delivery, Vol. 23, Issue 1
  • DOI: 10.1109/TPWRD.2007.911160

Smart plant operations: Vision, progress and challenges
journal, January 2007

  • Christofides, Panagiotis D.; Davis, James F.; El-Farra, Nael H.
  • AIChE Journal, Vol. 53, Issue 11
  • DOI: 10.1002/aic.11320

Cooperative distributed model predictive control
journal, August 2010


Anomaly Detection in Cyber Physical Systems Using Recurrent Neural Networks
conference, January 2017

  • Goh, Jonathan; Adepu, Sridhar; Tan, Marcus
  • 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE)
  • DOI: 10.1109/HASE.2017.36

Detecting and Handling Cyber-Attacks in Model Predictive Control of Chemical Processes
journal, September 2018

  • Wu, Zhe; Albalawi, Fahad; Zhang, Junfeng
  • Mathematics, Vol. 6, Issue 10
  • DOI: 10.3390/math6100173

Comprehensive study of decomposition effects on distributed output tracking of an integrated process over a wide operating range
journal, June 2018

  • Pourkargar, Davood Babaei; Almansoori, Ali; Daoutidis, Prodromos
  • Chemical Engineering Research and Design, Vol. 134
  • DOI: 10.1016/j.cherd.2018.04.045

Cybersecurity for Control Systems: A Process-Aware Perspective
journal, October 2016

  • Khorrami, Farshad; Krishnamurthy, Prashanth; Karri, Ramesh
  • IEEE Design & Test, Vol. 33, Issue 5
  • DOI: 10.1109/MDAT.2016.2594178

Modelling and optimization of a pilot-scale entrained-flow gasifier using artificial neural networks
journal, December 2019


Intrusion detection by machine learning: A review
journal, December 2009

  • Tsai, Chih-Fong; Hsu, Yu-Feng; Lin, Chia-Ying
  • Expert Systems with Applications, Vol. 36, Issue 10
  • DOI: 10.1016/j.eswa.2009.05.029

Subsystem decomposition of process networks for simultaneous distributed state estimation and control
journal, October 2018


Nonlinear model predictive control of a multiscale thin film deposition process using artificial neural networks
journal, November 2019


Model-based fault diagnosis in electric drives using machine learning
journal, June 2006


Machine Learning Techniques for Anomaly Detection: An Overview
journal, October 2013

  • Omar, Salima; Ngadi, Asri; H. Jebur, Hamid
  • International Journal of Computer Applications, Vol. 79, Issue 2
  • DOI: 10.5120/13715-1478

Distributed moving horizon state estimation for nonlinear systems with bounded uncertainties
journal, October 2013


Survey on Anomaly Detection using Data Mining Techniques
journal, January 2015


Machine Learning Methods for Attack Detection in the Smart Grid
journal, August 2016

  • Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay
  • IEEE Transactions on Neural Networks and Learning Systems, Vol. 27, Issue 8
  • DOI: 10.1109/TNNLS.2015.2404803

Optimization and control of a thin film growth process: A hybrid first principles/artificial neural network based multiscale modelling approach
journal, November 2018