skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples

Abstract

Abstract Three-dimensional structures have been solved for several naturally occurring RNA triple helices, although all are limited to six or fewer consecutive base triples, hindering accurate estimation of global and local structural parameters. We present an X-ray crystal structure of a right-handed, U•A-U-rich RNA triple helix with 11 continuous base triples. Due to helical unwinding, the RNA triple helix spans an average of 12 base triples per turn. The double helix portion of the RNA triple helix is more similar to both the helical and base step structural parameters of A′-RNA rather than A-RNA. Its most striking features are its wide and deep major groove, a smaller inclination angle and all three strands favoring a C3′-endo sugar pucker. Despite the presence of a third strand, the diameter of an RNA triple helix remains nearly identical to those of DNA and RNA double helices. Contrary to our previous modeling predictions, this structure demonstrates that an RNA triple helix is not limited in length to six consecutive base triples and that longer RNA triple helices may exist in nature. Our structure provides a starting point to establish structural parameters of the so-called ‘ideal’ RNA triple helix, analogous to A-RNA and B-DNA doublemore » helices.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
  2. Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL 60439 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1582472
Grant/Contract Number:  
W-31-109-Eng-38
Resource Type:
Published Article
Journal Name:
Nucleic Acids Research
Additional Journal Information:
Journal Name: Nucleic Acids Research; Journal ID: ISSN 0305-1048
Publisher:
Oxford University Press
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Ruszkowska, Agnieszka, Ruszkowski, Milosz, Hulewicz, Jacob P., Dauter, Zbigniew, and Brown, Jessica A. Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples. United Kingdom: N. p., 2020. Web. doi:10.1093/nar/gkz1222.
Ruszkowska, Agnieszka, Ruszkowski, Milosz, Hulewicz, Jacob P., Dauter, Zbigniew, & Brown, Jessica A. Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples. United Kingdom. doi:10.1093/nar/gkz1222.
Ruszkowska, Agnieszka, Ruszkowski, Milosz, Hulewicz, Jacob P., Dauter, Zbigniew, and Brown, Jessica A. Mon . "Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples". United Kingdom. doi:10.1093/nar/gkz1222.
@article{osti_1582472,
title = {Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples},
author = {Ruszkowska, Agnieszka and Ruszkowski, Milosz and Hulewicz, Jacob P. and Dauter, Zbigniew and Brown, Jessica A.},
abstractNote = {Abstract Three-dimensional structures have been solved for several naturally occurring RNA triple helices, although all are limited to six or fewer consecutive base triples, hindering accurate estimation of global and local structural parameters. We present an X-ray crystal structure of a right-handed, U•A-U-rich RNA triple helix with 11 continuous base triples. Due to helical unwinding, the RNA triple helix spans an average of 12 base triples per turn. The double helix portion of the RNA triple helix is more similar to both the helical and base step structural parameters of A′-RNA rather than A-RNA. Its most striking features are its wide and deep major groove, a smaller inclination angle and all three strands favoring a C3′-endo sugar pucker. Despite the presence of a third strand, the diameter of an RNA triple helix remains nearly identical to those of DNA and RNA double helices. Contrary to our previous modeling predictions, this structure demonstrates that an RNA triple helix is not limited in length to six consecutive base triples and that longer RNA triple helices may exist in nature. Our structure provides a starting point to establish structural parameters of the so-called ‘ideal’ RNA triple helix, analogous to A-RNA and B-DNA double helices.},
doi = {10.1093/nar/gkz1222},
journal = {Nucleic Acids Research},
number = ,
volume = ,
place = {United Kingdom},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1093/nar/gkz1222

Save / Share:

Works referenced in this record:

Structure of a yeast spliceosome at 3.6-angstrom resolution
journal, August 2015


New parameters for the refinement of nucleic acid-containing structures
journal, January 1996

  • Parkinson, G.; Vojtechovsky, J.; Clowney, L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 52, Issue 1
  • DOI: 10.1107/S0907444995011115

Geometric Parameters in Nucleic Acids:  Sugar and Phosphate Constituents
journal, January 1996

  • Gelbin, Anke; Schneider, Bohdan; Clowney, Lester
  • Journal of the American Chemical Society, Vol. 118, Issue 3
  • DOI: 10.1021/ja9528846

Structure of Poly (U)•Poly (A)•Poly (U)
journal, June 2000

  • Chandrasekaran, Rengaswami; Giacometti, Andrea; Arnott, Struther
  • Journal of Biomolecular Structure and Dynamics, Vol. 17, Issue 6
  • DOI: 10.1080/07391102.2000.10506590

General plasmids for producing RNA in vitro transcripts with homogeneous ends
journal, August 2003


Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix
journal, June 2014

  • Brown, Jessica A.; Bulkley, David; Wang, Jimin
  • Nature Structural & Molecular Biology, Vol. 21, Issue 7
  • DOI: 10.1038/nsmb.2844

Conformation-dependent restraints for polynucleotides: I. Clustering of the geometry of the phosphodiester group
journal, August 2016

  • Kowiel, Marcin; Brzezinski, Dariusz; Jaskolski, Mariusz
  • Nucleic Acids Research, Vol. 44, Issue 17
  • DOI: 10.1093/nar/gkw717

Structural analysis of a class III preQ 1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics
journal, June 2015

  • Liberman, Joseph A.; Suddala, Krishna C.; Aytenfisu, Asaminew
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 27
  • DOI: 10.1073/pnas.1503955112

Structure of the Human Telomerase RNA Pseudoknot Reveals Conserved Tertiary Interactions Essential for Function
journal, March 2005


A glossary of DNA structures from A to Z
journal, March 2003

  • Ghosh, Anirban; Bansal, Manju
  • Acta Crystallographica Section D Biological Crystallography, Vol. 59, Issue 4
  • DOI: 10.1107/S0907444903003251

Spectroscopic studies of chimeric DNA-RNA and RNA 29-base intramolecular triple helices
journal, May 1995

  • Liquier, J.; Taillandier, E.; Klinck, R.
  • Nucleic Acids Research, Vol. 23, Issue 10
  • DOI: 10.1093/nar/23.10.1722

Sequence and Structural Conservation in RNA Ribose Zippers
journal, July 2002


Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo
journal, June 2013

  • Cash, D. D.; Cohen-Zontag, O.; Kim, N. -K.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 27
  • DOI: 10.1073/pnas.1309590110

PHENIX : building new software for automated crystallographic structure determination
journal, October 2002

  • Adams, Paul D.; Grosse-Kunstleve, Ralf W.; Hung, Li-Wei
  • Acta Crystallographica Section D Biological Crystallography, Vol. 58, Issue 11
  • DOI: 10.1107/S0907444902016657

Conformational analysis of nucleic acids revisited: Curves+
journal, July 2009

  • Lavery, R.; Moakher, M.; Maddocks, J. H.
  • Nucleic Acids Research, Vol. 37, Issue 17
  • DOI: 10.1093/nar/gkp608

Human METTL16 is a N 6 ‐methyladenosine (m 6 A) methyltransferase that targets pre‐mRNAs and various non‐coding RNAs
journal, October 2017


Crystal structure of an RNA double helix incorporating a track of non-Watson–Crick base pairs
journal, October 1991

  • Holbrook, Stephen R.; Cheong, Chaejoon; Tinoco, Ignacio
  • Nature, Vol. 353, Issue 6344
  • DOI: 10.1038/353579a0

Structure and ligand binding of the SAM-V riboswitch
journal, June 2018

  • Huang, Lin; Lilley, David M. J.
  • Nucleic Acids Research, Vol. 46, Issue 13
  • DOI: 10.1093/nar/gky520

Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing
journal, September 1996


XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Structures for Poly(U).poly(A).poly(U) Triple Stranded Polynucleotides
journal, July 1973


Structural determinants for ligand capture by a class II preQ 1 riboswitch
journal, January 2014

  • Kang, Mijeong; Eichhorn, Catherine D.; Feigon, Juli
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 6
  • DOI: 10.1073/pnas.1400126111

Symmetry and structure of RNA and DNA triple helices
journal, September 1995

  • Raghunathan, G.; Miles, H. Todd; Sasisekharan, V.
  • Biopolymers, Vol. 36, Issue 3
  • DOI: 10.1002/bip.360360308

Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold
journal, April 2013

  • Liberman, Joseph A.; Salim, Mohammad; Krucinska, Jolanta
  • Nature Chemical Biology, Vol. 9, Issue 6
  • DOI: 10.1038/nchembio.1231

Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches
journal, April 2011

  • Smith, K. D.; Shanahan, C. A.; Moore, E. L.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 19
  • DOI: 10.1073/pnas.1018857108

Structure of the SAM-II riboswitch bound to S-adenosylmethionine
journal, January 2008

  • Gilbert, Sunny D.; Rambo, Robert P.; Van Tyne, Daria
  • Nature Structural & Molecular Biology, Vol. 15, Issue 2
  • DOI: 10.1038/nsmb.1371

The Structure of Triple Helical Poly(U)·Poly(A)·Poly(U) Studied by Raman Spectroscopy
journal, December 1984


Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition
journal, November 1992


CURVES+ web server for analyzing and visualizing the helical, backbone and groove parameters of nucleic acid structures
journal, May 2011

  • Blanchet, C.; Pasi, M.; Zakrzewska, K.
  • Nucleic Acids Research, Vol. 39, Issue suppl
  • DOI: 10.1093/nar/gkr316

Structural Features and Stability of an RNA Triple Helix in Solution
journal, July 1996


The structure of crystals containing a hydrogen-bonded complex of 1-methylthymine and 9-methyladenine
journal, October 1959


Formation of a Three-Stranded Polynucleotide Molecule
journal, April 1957

  • Felsenfeld, G.; Davies, David R.; Rich, Alexander
  • Journal of the American Chemical Society, Vol. 79, Issue 8
  • DOI: 10.1021/ja01565a074

Use of TLS parameters to model anisotropic displacements in macromolecular refinement
journal, January 2001

  • Winn, M. D.; Isupov, M. N.; Murshudov, G. N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 57, Issue 1
  • DOI: 10.1107/S0907444900014736

Crystal Structure of a Self-Spliced Group II Intron
journal, April 2008


Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA
journal, November 2016

  • Brown, Jessica A.; Kinzig, Charles G.; DeGregorio, Suzanne J.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 49
  • DOI: 10.1073/pnas.1614759113

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Geometric nomenclature and classification of RNA base pairs
journal, April 2001


Molecular Conformations and Structure Transitions of RNA Complementary Helices and their Possible Biological Significance
journal, November 1968

  • Arnott, S.; Fuller, W.; Hodgson, A.
  • Nature, Vol. 220, Issue 5167
  • DOI: 10.1038/220561a0

Structure of a B-DNA dodecamer: conformation and dynamics.
journal, April 1981

  • Drew, H. R.; Wing, R. M.; Takano, T.
  • Proceedings of the National Academy of Sciences, Vol. 78, Issue 4
  • DOI: 10.1073/pnas.78.4.2179

Crystal Structure of an RNA Dodecamer Containing theEscherichia coliShine-Dalgarno Sequence
journal, June 1995

  • Schindelin, Hermann; Zhang, Man; Bald, Rolf
  • Journal of Molecular Biology, Vol. 249, Issue 3
  • DOI: 10.1006/jmbi.1995.0321

Structure of the Guanidine III Riboswitch
journal, November 2017


Analysis of local helix geometry in three B-DNA decamers and eight dodecamers
journal, January 1991

  • Yanagi, Kazunori; Privé, Gilbert G.; Dickerson, Richard E.
  • Journal of Molecular Biology, Vol. 217, Issue 1
  • DOI: 10.1016/0022-2836(91)90620-L

Models of triple-stranded polynucleotides with optimised stereochemistry
journal, October 1976

  • Arnott, S.; Bond, P. J.; Selsing, E.
  • Nucleic Acids Research, Vol. 3, Issue 10
  • DOI: 10.1093/nar/3.10.2459

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

RNA tertiary interactions in the large ribosomal subunit: The A-minor motif
journal, April 2001

  • Nissen, P.; Ippolito, J. A.; Ban, N.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 9
  • DOI: 10.1073/pnas.081082398

Poly(A) Tail Recognition by a Viral RNA Element Through Assembly of a Triple Helix
journal, November 2010


A'-form RNA double helix in the single crystal structure of r(UGAGCUUCGGCUC)
journal, February 1999