skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability

Abstract

State-of-the-art halide perovskite solar cells have bandgaps larger than 1.45 eV, which restricts their potential for realizing the Shockley-Queisser limit. Previous search for low-bandgap (1.2 to 1.4 eV) halide perovskites has resulted in several candidates, but all are hybrid organic-inorganic compositions, raising potential concern regarding device stability. Here we show the promise of an inorganic low-bandgap (1.38 eV) CsPb 0.6Sn 0.4I 3 perovskite stabilized via interface functionalization. Device efficiency up to 13.37% is demonstrated. The device shows high operational stability under one-sun-intensity illumination, with T 80 and T 70 lifetimes of 653 h and 1045 h, respectively ( T 80 and T 70 represent efficiency decays to 80% and 70% of the initial value, respectively), and long-term shelf stability under nitrogen atmosphere. Controlled exposure of the device to ambient atmosphere during a long-term (1000 h) test does not degrade the efficiency. These findings point to a promising direction for achieving low-bandgap perovskite solar cells with high stability.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [3]; ORCiD logo [3];  [3];  [3];  [2];  [2];  [4];  [4];  [4];  [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [2];  [2]
  1. Kunming Univ. of Science and Technology, Yunan (China); Brown Univ., Providence, RI (United States)
  2. Brown Univ., Providence, RI (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States)
  4. Kunming Univ. of Science and Technology, Yunan (China)
  5. Argonne National Lab. (ANL), Lemont, IL (United States); Northwestern Univ., Evanston, IL (United States)
  6. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division; US Department of the Navy, Office of Naval Research (ONR); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1582019
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 11; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Hu, Mingyu, Chen, Min, Guo, Peijun, Zhou, Hua, Deng, Junjing, Yao, Yudong, Jiang, Yi, Gong, Jue, Dai, Zhenghong, Zhou, Yunxuan, Qian, Feng, Chong, Xiaoyu, Feng, Jing, Schaller, Richard D., Zhu, Kai, Padture, Nitin P., and Zhou, Yuanyuan. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. United States: N. p., 2020. Web. doi:10.1038/s41467-019-13908-6.
Hu, Mingyu, Chen, Min, Guo, Peijun, Zhou, Hua, Deng, Junjing, Yao, Yudong, Jiang, Yi, Gong, Jue, Dai, Zhenghong, Zhou, Yunxuan, Qian, Feng, Chong, Xiaoyu, Feng, Jing, Schaller, Richard D., Zhu, Kai, Padture, Nitin P., & Zhou, Yuanyuan. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. United States. doi:10.1038/s41467-019-13908-6.
Hu, Mingyu, Chen, Min, Guo, Peijun, Zhou, Hua, Deng, Junjing, Yao, Yudong, Jiang, Yi, Gong, Jue, Dai, Zhenghong, Zhou, Yunxuan, Qian, Feng, Chong, Xiaoyu, Feng, Jing, Schaller, Richard D., Zhu, Kai, Padture, Nitin P., and Zhou, Yuanyuan. Thu . "Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability". United States. doi:10.1038/s41467-019-13908-6. https://www.osti.gov/servlets/purl/1582019.
@article{osti_1582019,
title = {Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability},
author = {Hu, Mingyu and Chen, Min and Guo, Peijun and Zhou, Hua and Deng, Junjing and Yao, Yudong and Jiang, Yi and Gong, Jue and Dai, Zhenghong and Zhou, Yunxuan and Qian, Feng and Chong, Xiaoyu and Feng, Jing and Schaller, Richard D. and Zhu, Kai and Padture, Nitin P. and Zhou, Yuanyuan},
abstractNote = {State-of-the-art halide perovskite solar cells have bandgaps larger than 1.45 eV, which restricts their potential for realizing the Shockley-Queisser limit. Previous search for low-bandgap (1.2 to 1.4 eV) halide perovskites has resulted in several candidates, but all are hybrid organic-inorganic compositions, raising potential concern regarding device stability. Here we show the promise of an inorganic low-bandgap (1.38 eV) CsPb0.6Sn0.4I3 perovskite stabilized via interface functionalization. Device efficiency up to 13.37% is demonstrated. The device shows high operational stability under one-sun-intensity illumination, with T80 and T70 lifetimes of 653 h and 1045 h, respectively (T80 and T70 represent efficiency decays to 80% and 70% of the initial value, respectively), and long-term shelf stability under nitrogen atmosphere. Controlled exposure of the device to ambient atmosphere during a long-term (1000 h) test does not degrade the efficiency. These findings point to a promising direction for achieving low-bandgap perovskite solar cells with high stability.},
doi = {10.1038/s41467-019-13908-6},
journal = {Nature Communications},
number = 1,
volume = 11,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Synthetic Approaches for Halide Perovskite Thin Films
journal, November 2018


Present status and future prospects of perovskite photovoltaics
journal, April 2018


Surface passivation of perovskite film for efficient solar cells
journal, April 2019


Planar perovskite solar cells with long-term stability using ionic liquid additives
journal, July 2019


Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from Solutions and Characterization
journal, November 2015

  • Zhou, Yuanyuan; Game, Onkar S.; Pang, Shuping
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 23
  • DOI: 10.1021/acs.jpclett.5b01843

Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications
journal, January 2018

  • Xiao, Zewen; Zhou, Yuanyuan; Hosono, Hideo
  • Chemistry - A European Journal, Vol. 24, Issue 10
  • DOI: 10.1002/chem.201705031

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Lewis-Adduct Mediated Grain-Boundary Functionalization for Efficient Ideal-Bandgap Perovskite Solar Cells with Superior Stability
journal, August 2018

  • Zong, Yingxia; Zhou, Zhongmin; Chen, Min
  • Advanced Energy Materials, Vol. 8, Issue 27
  • DOI: 10.1002/aenm.201800997

Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers
journal, November 2018


Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells
journal, November 2018

  • Li, Chongwen; Song, Zhaoning; Zhao, Dewei
  • Advanced Energy Materials, Vol. 9, Issue 3
  • DOI: 10.1002/aenm.201803135

Stable Low-Bandgap Pb-Sn Binary Perovskites for Tandem Solar Cells
journal, August 2016

  • Yang, Zhibin; Rajagopal, Adharsh; Chueh, Chu-Chen
  • Advanced Materials, Vol. 28, Issue 40
  • DOI: 10.1002/adma.201602696

CH 3 NH 3 Sn x Pb (1– x ) I 3 Perovskite Solar Cells Covering up to 1060 nm
journal, March 2014

  • Ogomi, Yuhei; Morita, Atsushi; Tsukamoto, Syota
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 6
  • DOI: 10.1021/jz5002117

Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells
journal, April 2019


Chemical stability and instability of inorganic halide perovskites
journal, January 2019

  • Zhou, Yuanyuan; Zhao, Yixin
  • Energy & Environmental Science, Vol. 12, Issue 5
  • DOI: 10.1039/C8EE03559H

Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells
journal, June 2018


“Unleaded” Perovskites: Status Quo and Future Prospects of Tin‐Based Perovskite Solar Cells
journal, September 2018

  • Ke, Weijun; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.
  • Advanced Materials, Vol. 31, Issue 47
  • DOI: 10.1002/adma.201803230

The geometric blueprint of perovskites
journal, May 2018

  • Filip, Marina R.; Giustino, Feliciano
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 21
  • DOI: 10.1073/pnas.1719179115

Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation
journal, January 2019


Thermodynamically stabilized β-CsPbI 3 –based perovskite solar cells with efficiencies >18%
journal, August 2019


Efficient α-CsPbI3 Photovoltaics with Surface Terminated Organic Cations
journal, October 2018


Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High-Efficiency and Air-Stable Photovoltaic Cells
journal, September 2016


Halide Perovskites: Is It All about the Interfaces?
journal, March 2019


X-ray ptychography
journal, December 2017


MnFe 2 O 4 @C Nanofibers as High-Performance Anode for Sodium-Ion Batteries
journal, April 2016


Heterojunction-Depleted Lead-Free Perovskite Solar Cells with Coarse-Grained B-γ-CsSnI 3 Thin Films
journal, September 2016

  • Wang, Ning; Zhou, Yuanyuan; Ju, Ming-Gang
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201601130

Composition and Interface Engineering for Efficient and Thermally Stable Pb-Sn Mixed Low-Bandgap Perovskite Solar Cells
journal, October 2018

  • Chi, Dan; Huang, Shihua; Zhang, Meiying
  • Advanced Functional Materials, Vol. 28, Issue 51
  • DOI: 10.1002/adfm.201804603

Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture
journal, October 2018

  • Turren-Cruz, Silver-Hamill; Hagfeldt, Anders; Saliba, Michael
  • Science, Vol. 362, Issue 6413
  • DOI: 10.1126/science.aat3583

Efficient and stable solution-processed planar perovskite solar cells via contact passivation
journal, February 2017


One-Year stable perovskite solar cells by 2D/3D interface engineering
journal, June 2017

  • Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15684

Effects of organic cations on the defect physics of tin halide perovskites
journal, January 2017

  • Shi, Tingting; Zhang, Hai-Shan; Meng, Weiwei
  • Journal of Materials Chemistry A, Vol. 5, Issue 29
  • DOI: 10.1039/C7TA02662E

Fusing Nanowires into Thin Films: Fabrication of Graded‐Heterojunction Perovskite Solar Cells with Enhanced Performance
journal, May 2019


Perovskite solar cells must come of age
journal, January 2018


Transformative Evolution of Organolead Triiodide Perovskite Thin Films from Strong Room-Temperature Solid–Gas Interaction between HPbI 3 -CH 3 NH 2 Precursor Pair
journal, January 2016

  • Pang, Shuping; Zhou, Yuanyuan; Wang, Zaiwei
  • Journal of the American Chemical Society, Vol. 138, Issue 3
  • DOI: 10.1021/jacs.5b11824

Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction
journal, February 2010

  • Lutterotti, Luca
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 268, Issue 3-4
  • DOI: 10.1016/j.nimb.2009.09.053

Parallel ptychographic reconstruction
journal, January 2014

  • Nashed, Youssef S. G.; Vine, David J.; Peterka, Tom
  • Optics Express, Vol. 22, Issue 26
  • DOI: 10.1364/OE.22.032082

First-principles simulation: ideas, illustrations and the CASTEP code
journal, March 2002

  • Segall, M. D.; Lindan, Philip J. D.; Probert, M. J.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 11
  • DOI: 10.1088/0953-8984/14/11/301

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Generalized norm-conserving pseudopotentials
journal, August 1989