skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations

Abstract

Information on the rate of diffusion of organic molecules within secondary organic aerosol (SOA) is needed to accurately predict the effects of SOA on climate and air quality. Diffusion can be important for predicting the growth, evaporation, and reaction rates of SOA under certain atmospheric conditions. Often, researchers have predicted diffusion rates of organic molecules within SOA using measurements of viscosity and the Stokes–Einstein relation ($D∝1/η$, where D is the diffusion coefficient and η is viscosity). However, the accuracy of this relation for predicting diffusion in SOA remains uncertain. Using rectangular area fluorescence recovery after photobleaching (rFRAP), we determined diffusion coefficients of fluorescent organic molecules over 8 orders in magnitude in proxies of SOA including citric acid, sorbitol,and a sucrose–citric acid mixture. These results were combined with literature data to evaluate the Stokes–Einstein relation for predicting the diffusion of organic molecules in SOA. Although almost all the data agree with the Stokes–Einstein relation within a factor of 10, a fractional Stokes–Einstein relation ($D∝1/η^ξ$) with ξ=0.93 is a better model for predicting the diffusion of organic molecules in the SOA proxies studied. In addition, based on the output from a chemical transport model, the Stokes–Einstein relation can overpredict mixing times of organic moleculesmore » within SOA by as much as 1 order of magnitude at an altitude of ~3 km compared to the fractional Stokes–Einstein relation with ξ=0.93. These results also have implications for other areas such as in food sciences and the preservation of biomolecules.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [3];  [4];  [5];  [1]; ORCiD logo [6];  [3]; ORCiD logo [7]; ORCiD logo [1]
  1. Univ. of Columbia, Vancouver, BC (Canada)
  2. Univ. of Bristol (United Kingdom); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Univ. of California, Irvine, CA (United States)
  4. Max Planck Inst. for Chemistry, Mainz (Germany); National Observatory of Athens, Palea Penteli (Greece)
  5. Max Planck Inst. for Chemistry, Mainz (Germany); Forschungszentrum Jülich (Germany)
  6. Max Planck Inst. for Chemistry, Mainz (Germany); The Cyprus Inst., Nicosia (Cyprus)
  7. Univ. of Bristol (United Kingdom)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1581748
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 19; Journal Issue: 15; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Evoy, Erin, Maclean, Adrian M., Rovelli, Grazia, Li, Ying, Tsimpidi, Alexandra P., Karydis, Vlassis A., Kamal, Saeid, Lelieveld, Jos, Shiraiwa, Manabu, Reid, Jonathan P., and Bertram, Allan K. Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations. United States: N. p., 2019. Web. doi:10.5194/acp-19-10073-2019.
Evoy, Erin, Maclean, Adrian M., Rovelli, Grazia, Li, Ying, Tsimpidi, Alexandra P., Karydis, Vlassis A., Kamal, Saeid, Lelieveld, Jos, Shiraiwa, Manabu, Reid, Jonathan P., & Bertram, Allan K. Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations. United States. doi:10.5194/acp-19-10073-2019.
Evoy, Erin, Maclean, Adrian M., Rovelli, Grazia, Li, Ying, Tsimpidi, Alexandra P., Karydis, Vlassis A., Kamal, Saeid, Lelieveld, Jos, Shiraiwa, Manabu, Reid, Jonathan P., and Bertram, Allan K. Fri . "Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations". United States. doi:10.5194/acp-19-10073-2019. https://www.osti.gov/servlets/purl/1581748.
@article{osti_1581748,
title = {Predictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations},
author = {Evoy, Erin and Maclean, Adrian M. and Rovelli, Grazia and Li, Ying and Tsimpidi, Alexandra P. and Karydis, Vlassis A. and Kamal, Saeid and Lelieveld, Jos and Shiraiwa, Manabu and Reid, Jonathan P. and Bertram, Allan K.},
abstractNote = {Information on the rate of diffusion of organic molecules within secondary organic aerosol (SOA) is needed to accurately predict the effects of SOA on climate and air quality. Diffusion can be important for predicting the growth, evaporation, and reaction rates of SOA under certain atmospheric conditions. Often, researchers have predicted diffusion rates of organic molecules within SOA using measurements of viscosity and the Stokes–Einstein relation ($D∝1/η$, where D is the diffusion coefficient and η is viscosity). However, the accuracy of this relation for predicting diffusion in SOA remains uncertain. Using rectangular area fluorescence recovery after photobleaching (rFRAP), we determined diffusion coefficients of fluorescent organic molecules over 8 orders in magnitude in proxies of SOA including citric acid, sorbitol,and a sucrose–citric acid mixture. These results were combined with literature data to evaluate the Stokes–Einstein relation for predicting the diffusion of organic molecules in SOA. Although almost all the data agree with the Stokes–Einstein relation within a factor of 10, a fractional Stokes–Einstein relation ($D∝1/η^ξ$) with ξ=0.93 is a better model for predicting the diffusion of organic molecules in the SOA proxies studied. In addition, based on the output from a chemical transport model, the Stokes–Einstein relation can overpredict mixing times of organic molecules within SOA by as much as 1 order of magnitude at an altitude of ~3 km compared to the fractional Stokes–Einstein relation with ξ=0.93. These results also have implications for other areas such as in food sciences and the preservation of biomolecules.},
doi = {10.5194/acp-19-10073-2019},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 15,
volume = 19,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Assessing the Influence of Secondary Organic versus Primary Carbonaceous Aerosols on Long-Range Atmospheric Polycyclic Aromatic Hydrocarbon Transport
journal, March 2014

  • Friedman, C. L.; Pierce, J. R.; Selin, N. E.
  • Environmental Science & Technology, Vol. 48, Issue 6
  • DOI: 10.1021/es405219r

β-Relaxation governs protein stability in sugar-glass matrices
journal, January 2012

  • Cicerone, Marcus T.; Douglas, Jack F.
  • Soft Matter, Vol. 8, Issue 10
  • DOI: 10.1039/c2sm06979b

Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol: BIOGENIC SECONDARY AEROSOL CCN ACTIVITY
journal, July 2005

  • Huff Hartz, Kara E.; Rosenørn, Thomas; Ferchak, Shaun R.
  • Journal of Geophysical Research: Atmospheres, Vol. 110, Issue D14
  • DOI: 10.1029/2004JD005754

Moisture diffusivity in food materials
journal, June 2013


Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry
journal, January 2010

  • Ng, N. L.; Canagaratna, M. R.; Zhang, Q.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 10
  • DOI: 10.5194/acp-10-4625-2010

Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin
journal, January 2009

  • Chen, Q.; Farmer, D. K.; Schneider, J.
  • Geophysical Research Letters, Vol. 36, Issue 20
  • DOI: 10.1029/2009GL039880

Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations
journal, January 2011

  • Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-3865-2011

Relative humidity-dependent viscosity of secondary organic material from toluene photo-oxidation and possible implications for organic particulate matter over megacities
journal, January 2016

  • Song, Mijung; Liu, Pengfei F.; Hanna, Sarah J.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 14
  • DOI: 10.5194/acp-16-8817-2016

Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site
journal, January 2011

  • Takahama, S.; Schwartz, R. E.; Russell, L. M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 13
  • DOI: 10.5194/acp-11-6367-2011

The viscosity of atmospherically relevant organic particles
journal, March 2018


Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies
journal, January 2011

  • Ervens, B.; Turpin, B. J.; Weber, R. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 21
  • DOI: 10.5194/acp-11-11069-2011

Mass Spectrometry Analysis in Atmospheric Chemistry
journal, November 2017


Experimental determination of chemical diffusion within secondary organic aerosol particles
journal, January 2013

  • Abramson, Evan; Imre, Dan; Beránek, Josef
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 8
  • DOI: 10.1039/c2cp44013j

The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles
journal, January 2013

  • Power, R. M.; Simpson, S. H.; Reid, J. P.
  • Chemical Science, Vol. 4, Issue 6
  • DOI: 10.1039/c3sc50682g

Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction
journal, January 2014

  • Zaveri, R. A.; Easter, R. C.; Shilling, J. E.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 10
  • DOI: 10.5194/acp-14-5153-2014

Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign
journal, January 2008

  • DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 14
  • DOI: 10.5194/acp-8-4027-2008

ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere
journal, January 2014

  • Tsimpidi, A. P.; Karydis, V. A.; Pozzer, A.
  • Geoscientific Model Development, Vol. 7, Issue 6
  • DOI: 10.5194/gmd-7-3153-2014

Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method
journal, January 2014

  • Price, H. C.; Murray, B. J.; Mattsson, J.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 8
  • DOI: 10.5194/acp-14-3817-2014

Mixing of secondary organic aerosols versus relative humidity
journal, October 2016

  • Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 45
  • DOI: 10.1073/pnas.1604536113

Identification of Organic Acids in Secondary Organic Aerosol and the Corresponding Gas Phase from Chamber Experiments
journal, November 2004

  • Fisseha, R.; Dommen, J.; Sax, M.
  • Analytical Chemistry, Vol. 76, Issue 22
  • DOI: 10.1021/ac048975f

The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic–water particles
journal, January 2017

  • Grayson, James W.; Evoy, Erin; Song, Mijung
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 13
  • DOI: 10.5194/acp-17-8509-2017

Estimating the Viscosity Range of SOA Particles Based on Their Coalescence Time
journal, December 2013


Chemical Reactivity and Liquid/Nonliquid States of Secondary Organic Material
journal, October 2015

  • Li, Yong Jie; Liu, Pengfei; Gong, Zhaoheng
  • Environmental Science & Technology, Vol. 49, Issue 22
  • DOI: 10.1021/acs.est.5b03392

Validation of the poke-flow technique combined with simulations of fluid flow for determining viscosities in samples with small volumes and high viscosities
journal, January 2015

  • Grayson, J. W.; Song, M.; Sellier, M.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 6
  • DOI: 10.5194/amt-8-2463-2015

Secondary organic aerosol from α-pinene ozonolysis in dynamic chamber system
journal, August 2009


A simplified description of the evolution of organic aerosol composition in the atmosphere: VAN KREVELEN DIAGRAM OF ORGANIC AEROSOL
journal, April 2010

  • Heald, C. L.; Kroll, J. H.; Jimenez, J. L.
  • Geophysical Research Letters, Vol. 37, Issue 8
  • DOI: 10.1029/2010GL042737

Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter
journal, January 2018


Fluorescent lifetime imaging of atmospheric aerosols: a direct probe of aerosol viscosity
journal, January 2013

  • Hosny, Neveen A.; Fitzgerald, Clare; Tong, Changlun
  • Faraday Discussions, Vol. 165
  • DOI: 10.1039/c3fd00041a

Gas uptake and chemical aging of semisolid organic aerosol particles
journal, June 2011

  • Shiraiwa, M.; Ammann, M.; Koop, T.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 27
  • DOI: 10.1073/pnas.1103045108

The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges
journal, February 2015

  • Nozière, Barbara; Kalberer, Markus; Claeys, Magda
  • Chemical Reviews, Vol. 115, Issue 10
  • DOI: 10.1021/cr5003485

O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, June 2008

  • Aiken, Allison C.; DeCarlo, Peter F.; Kroll, Jesse H.
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es703009q

Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol
journal, January 2013

  • Zhou, Shouming; Shiraiwa, Manabu; McWhinney, Robert D.
  • Faraday Discuss., Vol. 165
  • DOI: 10.1039/C3FD00030C

Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere
journal, January 2011

  • Koop, Thomas; Bookhold, Johannes; Shiraiwa, Manabu
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp22617g

Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation
journal, January 2019

  • Ullmann, Dagny A.; Hinks, Mallory L.; Maclean, Adrian M.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 3
  • DOI: 10.5194/acp-19-1491-2019

Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008
journal, January 2010

  • Hawkins, L. N.; Russell, L. M.; Covert, D. S.
  • Journal of Geophysical Research, Vol. 115, Issue D13
  • DOI: 10.1029/2009JD013276

Nonequilibrium atmospheric secondary organic aerosol formation and growth
journal, January 2012

  • Perraud, V.; Bruns, E. A.; Ezell, M. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 8
  • DOI: 10.1073/pnas.1119909109

Reactive intermediates revealed in secondary organic aerosol formation from isoprene
journal, December 2009

  • Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0911114107

Inhibition of efflorescence in mixed organic–inorganic particles at temperatures less than 250 K
journal, January 2010

  • Bodsworth, A.; Zobrist, B.; Bertram, A. K.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 38
  • DOI: 10.1039/c0cp00572j

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Relative humidity-dependent viscosities of isoprene-derived secondary organic material and atmospheric implications for isoprene-dominant forests
journal, January 2015


An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol
journal, November 2018


The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Diffusion coefficients of organic molecules in sucrose–water solutions and comparison with Stokes–Einstein predictions
journal, January 2017

  • Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 3
  • DOI: 10.5194/acp-17-2423-2017

Translational Diffusion in Sucrose Solutions in the Vicinity of Their Glass Transition Temperature
journal, December 1997

  • Champion, D.; Hervet, H.; Blond, G.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 50
  • DOI: 10.1021/jp971899i

Mixing times of organic molecules within secondary organic aerosol particles: a global planetary boundary layer perspective
journal, January 2017

  • Maclean, Adrian M.; Butenhoff, Christopher L.; Grayson, James W.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 21
  • DOI: 10.5194/acp-17-13037-2017

Global distribution of particle phase state in atmospheric secondary organic aerosols
journal, April 2017

  • Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15002

The effect of viscosity and diffusion on the HO 2 uptake by sucrose and secondary organic aerosol particles
journal, January 2016

  • Lakey, Pascale S. J.; Berkemeier, Thomas; Krapf, Manuel
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 20
  • DOI: 10.5194/acp-16-13035-2016

Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene
journal, February 2004


Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol
journal, January 2017

  • Shrivastava, Manish; Lou, Silja; Zelenyuk, Alla
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 6
  • DOI: 10.1073/pnas.1618475114

Biopreservation. Putting proteins under glass
journal, March 1995


Viscosity of Multicomponent Solutions of Simple and Complex Sugars in Water
journal, July 2007

  • Migliori, Massimo; Gabriele, Domenico; Di Sanzo, Rosa
  • Journal of Chemical & Engineering Data, Vol. 52, Issue 4
  • DOI: 10.1021/je700062x

Diffusivity measurements of volatile organics in levitated viscous aerosol particles
journal, January 2017

  • Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 13
  • DOI: 10.5194/acp-17-8453-2017

Deposition nucleation on mineral dust particles: a case against classical nucleation theory with the assumption of a single contact angle
journal, January 2012


Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers
journal, January 2016


Atomic test of the Stokes-Einstein law: Diffusion and solubility of Xe
journal, May 1981


An amorphous solid state of biogenic secondary organic aerosol particles
journal, October 2010

  • Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas
  • Nature, Vol. 467, Issue 7317
  • DOI: 10.1038/nature09455

Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX)
journal, February 2018

  • Zhang, Yue; Chen, Yuzhi; Lambe, Andrew T.
  • Environmental Science & Technology Letters, Vol. 5, Issue 3
  • DOI: 10.1021/acs.estlett.8b00044

Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol
journal, June 2017

  • Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen
  • Reviews of Geophysics, Vol. 55, Issue 2
  • DOI: 10.1002/2016RG000540

Carboxylic Acids in Secondary Aerosols from Oxidation of Cyclic Monoterpenes by Ozone
journal, March 2000

  • Glasius, Marianne; Lahaniati, Maria; Calogirou, Aggelos
  • Environmental Science & Technology, Vol. 34, Issue 6
  • DOI: 10.1021/es990445r

Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene
journal, August 2006

  • Surratt, Jason D.; Murphy, Shane M.; Kroll, Jesse H.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 31
  • DOI: 10.1021/jp061734m

The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere
journal, January 2006

  • Jöckel, P.; Tost, H.; Pozzer, A.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5067-2006

Supercooled liquids and the glass transition
journal, March 2001

  • Debenedetti, Pablo G.; Stillinger, Frank H.
  • Nature, Vol. 410, Issue 6825
  • DOI: 10.1038/35065704

Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups
journal, January 2011

  • Liu, S.; Day, D. A.; Shields, J. E.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 16
  • DOI: 10.5194/acp-11-8321-2011

Viscosity of Aqueous Carbohydrate Solutions at Different Temperatures and Concentrations
journal, January 2007

  • Telis, V. R. N.; Telis-Romero, J.; Mazzotti, H. B.
  • International Journal of Food Properties, Vol. 10, Issue 1
  • DOI: 10.1080/10942910600673636

Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α -pinene and limonene
journal, January 2009

  • Saathoff, H.; Naumann, K. -H.; Möhler, O.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 5
  • DOI: 10.5194/acp-9-1551-2009

Hydroxydicarboxylic Acids:  Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene
journal, March 2007

  • Claeys, Magda; Szmigielski, Rafal; Kourtchev, Ivan
  • Environmental Science & Technology, Vol. 41, Issue 5
  • DOI: 10.1021/es0620181

Nanoscale interfacial gradients formed by the reactive uptake of OH radicals onto viscous aerosol surfaces
journal, January 2015

  • Davies, James F.; Wilson, Kevin R.
  • Chemical Science, Vol. 6, Issue 12
  • DOI: 10.1039/C5SC02326B

Connecting Bulk Viscosity Measurements to Kinetic Limitations on Attaining Equilibrium for a Model Aerosol Composition
journal, August 2014

  • Booth, A. Murray; Murphy, Ben; Riipinen, Ilona
  • Environmental Science & Technology, Vol. 48, Issue 16
  • DOI: 10.1021/es501705c

Comparison of Approaches for Measuring and Predicting the Viscosity of Ternary Component Aerosol Particles
journal, February 2019


Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol
journal, January 2012


Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs
journal, March 2018


ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model
journal, January 2018

  • Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pozzer, Andrea
  • Geoscientific Model Development, Vol. 11, Issue 8
  • DOI: 10.5194/gmd-11-3369-2018

Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations
journal, May 2019

  • Zhou, Shouming; Hwang, Brian C. H.; Lakey, Pascale S. J.
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1902517116

Lability of secondary organic particulate matter
journal, October 2016

  • Liu, Pengfei; Li, Yong Jie; Wang, Yan
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 45
  • DOI: 10.1073/pnas.1603138113

Diffusion and reactivity in ultraviscous aerosol and the correlation with particle viscosity
journal, January 2016

  • Marshall, Frances H.; Miles, Rachael E. H.; Song, Young-Chul
  • Chemical Science, Vol. 7, Issue 2
  • DOI: 10.1039/C5SC03223G

An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)
journal, January 2010

  • Martin, S. T.; Andreae, M. O.; Althausen, D.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11415-2010

Sucrose diffusion in aqueous solution
journal, January 2016

  • Price, Hannah C.; Mattsson, Johan; Murray, Benjamin J.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 28
  • DOI: 10.1039/C6CP03238A

Rheology of supersaturated sucrose solutions
journal, December 2006


Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope
journal, January 2010

  • Deschout, Hendrik; Hagman, Joel; Fransson, Sophia
  • Optics Express, Vol. 18, Issue 22
  • DOI: 10.1364/OE.18.022886

On the pressure dependence of the viscosity of aqueous sugar solutions
journal, January 2002


Measurements and Predictions of Binary Component Aerosol Particle Viscosity
journal, October 2016

  • Song, Young Chul; Haddrell, Allen E.; Bzdek, Bryan R.
  • The Journal of Physical Chemistry A, Vol. 120, Issue 41
  • DOI: 10.1021/acs.jpca.6b07835

Synergy between Secondary Organic Aerosols and Long-Range Transport of Polycyclic Aromatic Hydrocarbons
journal, November 2012

  • Zelenyuk, Alla; Imre, Dan; Beránek, Josef
  • Environmental Science & Technology, Vol. 46, Issue 22
  • DOI: 10.1021/es302743z

Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon
journal, September 2010


Crystallization of Aqueous Ammonium Sulfate Particles Internally Mixed with Soot and Kaolinite:  Crystallization Relative Humidities and Nucleation Rates
journal, July 2006

  • Pant, Atul; Parsons, Matthew T.; Bertram, Allan K.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 28
  • DOI: 10.1021/jp060985s

Viscosity of  -pinene secondary organic material and implications for particle growth and reactivity
journal, April 2013

  • Renbaum-Wolff, L.; Grayson, J. W.; Bateman, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 20
  • DOI: 10.1073/pnas.1219548110

Formation of Glasses from Liquids and Biopolymers
journal, March 1995


Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol
journal, January 2011

  • Vaden, T. D.; Imre, D.; Beranek, J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 6
  • DOI: 10.1073/pnas.1013391108

S PATIALLY H ETEROGENEOUS D YNAMICS IN S UPERCOOLED L IQUIDS
journal, October 2000


c,T-Dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions
journal, October 2000