skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 16, 2020

Title: A boundary condition for Guderley’s converging shock problem

Abstract

The Guderley model of a self-similar imploding shock based on the group invariance of the flow equations is a powerful tool in understanding the behavior of converging shock waves. Two modifications described here improve the predictions of observable quantities in spherical-shock wave experiments. First, a non-infinite boundary condition is established by the isentropic release of the outer pressure. Second, a two-temperature system of ions and electrons allows description of higher temperatures while conserving energy and without perturbing the overall hydrodynamics of the solution. Furthermore, these modifications of the Guderley model improve the prediction of the observables in laser driven spherical shock experiments in reference to a one dimensional (1-D) hydrodynamics code.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [2];  [1]
  1. Univ. of Rochester, NY (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
Contributing Org.:
Laboratory for Laser Energetics, University of Rochester
OSTI Identifier:
1581638
Alternate Identifier(s):
OSTI ID: 1579459
Report Number(s):
2019-240, 2541
Journal ID: ISSN 1070-6631; 2019-240, 1542, 2499
Grant/Contract Number:  
NA0003856; SC0019269
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Fluids
Additional Journal Information:
Journal Volume: 31; Journal Issue: 12; Journal ID: ISSN 1070-6631
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Ruby, J. J., Rygg, J. R., Gaffney, J. A., Bachmann, B., and Collins, G. W. A boundary condition for Guderley’s converging shock problem. United States: N. p., 2019. Web. doi:10.1063/1.5130769.
Ruby, J. J., Rygg, J. R., Gaffney, J. A., Bachmann, B., & Collins, G. W. A boundary condition for Guderley’s converging shock problem. United States. doi:10.1063/1.5130769.
Ruby, J. J., Rygg, J. R., Gaffney, J. A., Bachmann, B., and Collins, G. W. Mon . "A boundary condition for Guderley’s converging shock problem". United States. doi:10.1063/1.5130769.
@article{osti_1581638,
title = {A boundary condition for Guderley’s converging shock problem},
author = {Ruby, J. J. and Rygg, J. R. and Gaffney, J. A. and Bachmann, B. and Collins, G. W.},
abstractNote = {The Guderley model of a self-similar imploding shock based on the group invariance of the flow equations is a powerful tool in understanding the behavior of converging shock waves. Two modifications described here improve the predictions of observable quantities in spherical-shock wave experiments. First, a non-infinite boundary condition is established by the isentropic release of the outer pressure. Second, a two-temperature system of ions and electrons allows description of higher temperatures while conserving energy and without perturbing the overall hydrodynamics of the solution. Furthermore, these modifications of the Guderley model improve the prediction of the observables in laser driven spherical shock experiments in reference to a one dimensional (1-D) hydrodynamics code.},
doi = {10.1063/1.5130769},
journal = {Physics of Fluids},
number = 12,
volume = 31,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 16, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

On the question of universality of imploding shock waves
journal, August 2008


Converging cylindrical shocks in ideal magnetohydrodynamics
journal, September 2014

  • Pullin, D. I.; Mostert, W.; Wheatley, V.
  • Physics of Fluids, Vol. 26, Issue 9
  • DOI: 10.1063/1.4894743

The Guderley problem revisited
journal, February 2012

  • Ramsey, Scott D.; Kamm, James R.; Bolstad, John H.
  • International Journal of Computational Fluid Dynamics, Vol. 26, Issue 2
  • DOI: 10.1080/10618562.2011.647768

Optical properties of highly compressed polystyrene: An ab initio study
journal, October 2017


Strong Convergent Shock Waves Near the Center of Convergence:A Power Series Solution
journal, December 1988

  • Hafner, Peter
  • SIAM Journal on Applied Mathematics, Vol. 48, Issue 6
  • DOI: 10.1137/0148076

Initial performance results of the OMEGA laser system
journal, January 1997


Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution
journal, January 2006

  • Goncharov, V. N.; Gotchev, O. V.; Vianello, E.
  • Physics of Plasmas, Vol. 13, Issue 1
  • DOI: 10.1063/1.2162803

Converging shock flows for a Mie-Grüneisen equation of state
journal, April 2018

  • Ramsey, Scott D.; Schmidt, Emma M.; Boyd, Zachary M.
  • Physics of Fluids, Vol. 30, Issue 4
  • DOI: 10.1063/1.5018323

Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs
journal, October 2007


Piston driven converging shock waves in a stiffened gas
journal, August 2019

  • Ramsey, Scott D.; Baty, Roy S.
  • Physics of Fluids, Vol. 31, Issue 8
  • DOI: 10.1063/1.5109097

Limiting Temperatures of Spherical Shock Wave Implosion
journal, January 2016


Convergence of strong shock waves in non-ideal magnetogasdynamics
journal, November 2018

  • Chauhan, Antim; Arora, Rajan; Tomar, Amit
  • Physics of Fluids, Vol. 30, Issue 11
  • DOI: 10.1063/1.5051589

Improved formulas for fusion cross-sections and thermal reactivities
journal, April 1992


Multiple spherically converging shock waves in liquid deuterium
journal, September 2011

  • Boehly, T. R.; Goncharov, V. N.; Seka, W.
  • Physics of Plasmas, Vol. 18, Issue 9
  • DOI: 10.1063/1.3640805

Verification Assessment of Piston Boundary Conditions for Lagrangian Simulation of Compressible Flow Similarity Solutions
journal, December 2015

  • Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
  • Journal of Verification, Validation and Uncertainty Quantification, Vol. 1, Issue 2
  • DOI: 10.1115/1.4030929

Asymptotic Scaling Laws for Imploding Thin Fluid Shells
journal, May 2002


The point explosion with heat conduction
journal, July 1991

  • Reinicke, P.; Meyer‐ter‐Vehn, J.
  • Physics of Fluids A: Fluid Dynamics, Vol. 3, Issue 7
  • DOI: 10.1063/1.857961

Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


Bubble dynamics, shock waves and sonoluminescence
journal, February 1999

  • Ohl, Claus–Dieter; Kurz, Thomas; Geisler, Reinhard
  • Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 357, Issue 1751
  • DOI: 10.1098/rsta.1999.0327

Self-Similar Solutions for Converging Shocks and Collapsing Cavities
journal, April 1981

  • Lazarus, Roger B.
  • SIAM Journal on Numerical Analysis, Vol. 18, Issue 2
  • DOI: 10.1137/0718022

An analytic description of converging shock waves
journal, January 1998


Verification Assessment of Piston Boundary Conditions for Lagrangian Simulation of the Guderley Problem
journal, September 2017

  • Ramsey, Scott D.; Lilieholm, Jennifer F.
  • Journal of Verification, Validation and Uncertainty Quantification, Vol. 2, Issue 3
  • DOI: 10.1115/1.4037888

Double-Detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell mass Models
journal, July 2010