DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A finite scale model for shock structure

Abstract

In this paper we explore the use of a finite scale model of fluid dynamics to predict the finite structure of a shock wave in a perfect gas. We begin by documenting the history and issues that have arisen when Navier–Stokes theory is applied to the shock structure problem, and continue by motivating the improvement that finite scale theory might provide from its representation of inviscid (anomalous) dissipation. Furthermore, our primary results include the formulation of a traveling wave equation from finite scale theory, an analysis of the solutions of that equation as regards shock width and monotonicity properties, and an estimation of the critical parameter of the theory from experimental data.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1581576
Alternate Identifier(s):
OSTI ID: 1693718
Report Number(s):
LA-UR-19-26111
Journal ID: ISSN 0167-2789; TRN: US2101871
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Physica. D, Nonlinear Phenomena
Additional Journal Information:
Journal Volume: 403; Journal Issue: C; Journal ID: ISSN 0167-2789
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Margolin, Len G., Plesko, Catherine Suzanne, and Reisner, Jon Michael. A finite scale model for shock structure. United States: N. p., 2019. Web. doi:10.1016/j.physd.2019.132308.
Margolin, Len G., Plesko, Catherine Suzanne, & Reisner, Jon Michael. A finite scale model for shock structure. United States. https://doi.org/10.1016/j.physd.2019.132308
Margolin, Len G., Plesko, Catherine Suzanne, and Reisner, Jon Michael. Fri . "A finite scale model for shock structure". United States. https://doi.org/10.1016/j.physd.2019.132308. https://www.osti.gov/servlets/purl/1581576.
@article{osti_1581576,
title = {A finite scale model for shock structure},
author = {Margolin, Len G. and Plesko, Catherine Suzanne and Reisner, Jon Michael},
abstractNote = {In this paper we explore the use of a finite scale model of fluid dynamics to predict the finite structure of a shock wave in a perfect gas. We begin by documenting the history and issues that have arisen when Navier–Stokes theory is applied to the shock structure problem, and continue by motivating the improvement that finite scale theory might provide from its representation of inviscid (anomalous) dissipation. Furthermore, our primary results include the formulation of a traveling wave equation from finite scale theory, an analysis of the solutions of that equation as regards shock width and monotonicity properties, and an estimation of the critical parameter of the theory from experimental data.},
doi = {10.1016/j.physd.2019.132308},
journal = {Physica. D, Nonlinear Phenomena},
number = C,
volume = 403,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Method for the Numerical Calculation of Hydrodynamic Shocks
journal, March 1950

  • VonNeumann, J.; Richtmyer, R. D.
  • Journal of Applied Physics, Vol. 21, Issue 3
  • DOI: 10.1063/1.1699639

Numerical simulation of turbulent mixing by Rayleigh-Taylor instability
journal, July 1984


Three‐dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability
journal, May 1991

  • Youngs, David L.
  • Physics of Fluids A: Fluid Dynamics, Vol. 3, Issue 5
  • DOI: 10.1063/1.858059

Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov instabilities
journal, December 1994


Molecular mixing in Rayleigh–Taylor instability
journal, April 1994


The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability
journal, May 2010


Modeling of Rayleigh-Taylor mixing using single-fluid models
journal, January 2019

  • Kokkinakis, Ioannis W.; Drikakis, Dimitris; Youngs, David L.
  • Physical Review E, Vol. 99, Issue 1
  • DOI: 10.1103/PhysRevE.99.013104

Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection
journal, March 1977


A rationale for implicit turbulence modelling
journal, January 2002

  • Margolin, Len G.; Rider, William J.
  • International Journal for Numerical Methods in Fluids, Vol. 39, Issue 9
  • DOI: 10.1002/fld.331

Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam
journal, April 1976


Electron beam density measurements in shock waves in argon
journal, November 1969


Onsager and the theory of hydrodynamic turbulence
journal, January 2006

  • Eyink, Gregory L.; Sreenivasan, Katepalli R.
  • Reviews of Modern Physics, Vol. 78, Issue 1
  • DOI: 10.1103/RevModPhys.78.87

Traveling wave solutions for finite scale equations
journal, October 2012


A note on finite-scale Navier–Stokes theory: The case of constant viscosity, strictly adiabatic flow
journal, January 2015


The curious events leading to the theory of shock waves
journal, June 2007


Aerial Plane Waves of Finite Amplitude
journal, September 1910

  • Rayleigh, L.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 84, Issue 570
  • DOI: 10.1098/rspa.1910.0075

Sto�welle und Detonation
journal, December 1922


Note on Becker's Theory of the Shock Front
journal, November 1944

  • Thomas, L. H.
  • The Journal of Chemical Physics, Vol. 12, Issue 11
  • DOI: 10.1063/1.1723889

On a Complete Solution of the One-Dimensional Flow Equations of a Viscous, Heat-Conducting, Compressible Gas
journal, November 1949

  • Morduchow, Morris; Libby, Paul A.
  • Journal of the Aeronautical Sciences, Vol. 16, Issue 11
  • DOI: 10.2514/8.11882

Entropy in self-similar shock profiles
journal, October 2017


Beyond the Navier–Stokes equations: Burnett hydrodynamics
journal, August 2008


Modeling shock-wave deformation via molecular dynamics
journal, April 1988


One-Dimensional Multiple-Temperature Gas-Kinetic Bhatnagar-Gross-Krook Scheme for Shock Wave Computation
journal, May 2008

  • Cai, Chunpei; Liu, Danny D.; Xu, Kun
  • AIAA Journal, Vol. 46, Issue 5
  • DOI: 10.2514/1.27432

Simulations of Compressible Flows with Strong Shocks by an Adaptive Lattice Boltzmann Model
journal, June 2000


Lattice Boltzmann model for compressible flows on standard lattices: Variable Prandtl number and adiabatic exponent
journal, January 2019


The Solution of the Boltzmann Equation for a Shock Wave
journal, June 1951


Computing Turbulent Shear Flows — A Convenient Conspiracy
journal, January 1993

  • Oran, Elaine S.; Boris, Jay P.
  • Computers in Physics, Vol. 7, Issue 5
  • DOI: 10.1063/1.4823213

Kolmogorov‐like spectra in decaying three‐dimensional supersonic flows
journal, June 1994

  • Porter, D. H.; Pouquet, A.; Woodward, P. R.
  • Physics of Fluids, Vol. 6, Issue 6
  • DOI: 10.1063/1.868217

Large-eddy simulations of convective boundary layers using nonoscillatory differencing
journal, September 1999

  • Margolin, Len G.; Smolarkiewicz, Piotr K.; Sorbjan, Zbigniew
  • Physica D: Nonlinear Phenomena, Vol. 133, Issue 1-4
  • DOI: 10.1016/S0167-2789(99)00083-4

Heuristic stability theory for finite-difference equations
journal, June 1968


Finite scale theory: The role of the observer in classical fluid flow
journal, April 2014


Finite-scale equations for compressible fluid flow
journal, July 2009

  • Margolin, L. G.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, Issue 1899
  • DOI: 10.1098/rsta.2008.0290

Discrete regularization
journal, January 2019

  • Margolin, Len; Plesko, Catherine
  • Evolution Equations & Control Theory, Vol. 8, Issue 1
  • DOI: 10.3934/eect.2019007

Conservation laws in discrete geometry
journal, January 2019

  • G. Margolin, Len; S. Baty, Roy
  • Journal of Geometric Mechanics, Vol. 11, Issue 2
  • DOI: 10.3934/jgm.2019010

Structure of a Plane Shock Layer
journal, January 1962

  • Liepmann, H. W.; Narasimha, R.; Chahine, M. T.
  • Physics of Fluids, Vol. 5, Issue 11
  • DOI: 10.1063/1.1706527

The velocity distribution function within a shock wave
journal, November 1967


Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability
journal, August 2015

  • Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.
  • Physics of Fluids, Vol. 27, Issue 8
  • DOI: 10.1063/1.4928338

Use of artificial viscosity in multidimensional fluid dynamic calculations
journal, July 1980


A space–time smooth artificial viscosity method for nonlinear conservation laws
journal, February 2013


Scale matters
journal, March 2018

  • Margolin, L. G.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, Issue 2118
  • DOI: 10.1098/rsta.2017.0235