skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics

Abstract

Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important rolemore » in the sap flux response of humid tropical forests to VPD. Finally, our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [12];  [13];  [14];  [15];  [15];  [16];  [17];  [13];  [15] more »;  [18];  [18];  [15];  [11];  [19];  [20];  [15];  [21];  [22];  [10];  [3];  [10];  [23] « less
  1. Swiss Federal Inst. for Forest, Snow and Landscape Research WSL, Birmensdorf (Switzerland); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Texas Rio Grande Valley, Edinburg, TX (United States)
  3. USDA Forest Service, Rio Piedras, PR (United States)
  4. Smithsonian Tropical Research Inst., Panama City (Panama); Smithsonian Conservation Biology Inst., Front Royal, VA (United States)
  5. Univ. of New Hampshire, Durham, NH (United States)
  6. Arizona State Univ., Tempe, AZ (United States); Texas A & M Univ., College Station, TX (United States)
  7. Chapman Univ., Orange, CA (United States)
  8. Florida International Univ., Miami, FL (United States)
  9. Univ. of Lorraine, Nancy (France)
  10. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  11. Univ. de Guyane, Kourou (France)
  12. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  13. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  14. Princeton Univ., NJ (United States); Smithsonian Tropical Research Inst., Panama City (Panama)
  15. Univ. of California, Berkeley, CA (United States)
  16. Univ. of Texas, Austin, TX (United States); Univ. of Montpellier (France)
  17. Inst. Nacional de Pesquisas da Amazônia (INPA), Manaus (Brazil)
  18. Texas A & M Univ., College Station, TX (United States)
  19. Univ. of Maryland, College Park, MD (United States)
  20. Swiss Federal Inst. for Forest, Snow and Landscape Research WSL, Birmensdorf (Switzerland); ETH Zurich (Switzerland); Czech Univ. of Life Sciences Prague, Suchdol (Czech Republic)
  21. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  22. Smithsonian Tropical Research Inst., Panama City (Panama); Louisiana State Univ., Baton Rouge, LA (United States)
  23. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); Swiss National Science Foundation (SNSF); Swiss National Science Foundation (SNF); USDOE Laboratory Directed Research and Development (LDRD) Program; Agence Nationale de la Recherché (ANR); Ecofor; Allenvi; AnaEE France
OSTI Identifier:
1581383
Alternate Identifier(s):
OSTI ID: 1607289
Grant/Contract Number:  
AC02-05CH11231; SC0011806; 5231.00639.001.01; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Oecologia
Additional Journal Information:
Journal Volume: 191; Journal Issue: 3; Journal ID: ISSN 0029-8549
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; evapotranspiration; plant functional traits; transpiration; vapor pressure deficit

Citation Formats

Grossiord, Charlotte, Christoffersen, Bradley, Alonso-Rodríguez, Aura M., Anderson-Teixeira, Kristina, Asbjornsen, Heidi, Aparecido, Luiza Maria T., Carter Berry, Z., Baraloto, Christopher, Bonal, Damien, Borrego, Isaac, Burban, Benoit, Chambers, Jeffrey Q., Christianson, Danielle S., Detto, Matteo, Faybishenko, Boris, Fontes, Clarissa G., Fortunel, Claire, Gimenez, Bruno O., Jardine, Kolby J., Kueppers, Lara, Miller, Gretchen R., Moore, Georgianne W., Negron-Juarez, Robinson, Stahl, Clément, Swenson, Nathan G., Trotsiuk, Volodymyr, Varadharajan, Charu, Warren, Jeffrey M., Wolfe, Brett T., Wei, Liang, Wood, Tana E., Xu, Chonggang, and McDowell, Nate G. Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. United States: N. p., 2019. Web. https://doi.org/10.1007/s00442-019-04513-x.
Grossiord, Charlotte, Christoffersen, Bradley, Alonso-Rodríguez, Aura M., Anderson-Teixeira, Kristina, Asbjornsen, Heidi, Aparecido, Luiza Maria T., Carter Berry, Z., Baraloto, Christopher, Bonal, Damien, Borrego, Isaac, Burban, Benoit, Chambers, Jeffrey Q., Christianson, Danielle S., Detto, Matteo, Faybishenko, Boris, Fontes, Clarissa G., Fortunel, Claire, Gimenez, Bruno O., Jardine, Kolby J., Kueppers, Lara, Miller, Gretchen R., Moore, Georgianne W., Negron-Juarez, Robinson, Stahl, Clément, Swenson, Nathan G., Trotsiuk, Volodymyr, Varadharajan, Charu, Warren, Jeffrey M., Wolfe, Brett T., Wei, Liang, Wood, Tana E., Xu, Chonggang, & McDowell, Nate G. Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. United States. https://doi.org/10.1007/s00442-019-04513-x
Grossiord, Charlotte, Christoffersen, Bradley, Alonso-Rodríguez, Aura M., Anderson-Teixeira, Kristina, Asbjornsen, Heidi, Aparecido, Luiza Maria T., Carter Berry, Z., Baraloto, Christopher, Bonal, Damien, Borrego, Isaac, Burban, Benoit, Chambers, Jeffrey Q., Christianson, Danielle S., Detto, Matteo, Faybishenko, Boris, Fontes, Clarissa G., Fortunel, Claire, Gimenez, Bruno O., Jardine, Kolby J., Kueppers, Lara, Miller, Gretchen R., Moore, Georgianne W., Negron-Juarez, Robinson, Stahl, Clément, Swenson, Nathan G., Trotsiuk, Volodymyr, Varadharajan, Charu, Warren, Jeffrey M., Wolfe, Brett T., Wei, Liang, Wood, Tana E., Xu, Chonggang, and McDowell, Nate G. Fri . "Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics". United States. https://doi.org/10.1007/s00442-019-04513-x. https://www.osti.gov/servlets/purl/1581383.
@article{osti_1581383,
title = {Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics},
author = {Grossiord, Charlotte and Christoffersen, Bradley and Alonso-Rodríguez, Aura M. and Anderson-Teixeira, Kristina and Asbjornsen, Heidi and Aparecido, Luiza Maria T. and Carter Berry, Z. and Baraloto, Christopher and Bonal, Damien and Borrego, Isaac and Burban, Benoit and Chambers, Jeffrey Q. and Christianson, Danielle S. and Detto, Matteo and Faybishenko, Boris and Fontes, Clarissa G. and Fortunel, Claire and Gimenez, Bruno O. and Jardine, Kolby J. and Kueppers, Lara and Miller, Gretchen R. and Moore, Georgianne W. and Negron-Juarez, Robinson and Stahl, Clément and Swenson, Nathan G. and Trotsiuk, Volodymyr and Varadharajan, Charu and Warren, Jeffrey M. and Wolfe, Brett T. and Wei, Liang and Wood, Tana E. and Xu, Chonggang and McDowell, Nate G.},
abstractNote = {Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Finally, our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.},
doi = {10.1007/s00442-019-04513-x},
journal = {Oecologia},
number = 3,
volume = 191,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

PERSPECTIVE: Rethinking the value of high wood density: Rethinking the value of high wood density
journal, March 2010


Chemical root to shoot signaling under drought
journal, June 2008


Comparison of tree transpiration under wet and dry canopy conditions in a Costa Rican premontane tropical forest: Tropical Tree Transpiration Response to Wet and Dry Canopy Conditions
journal, August 2016

  • Aparecido, Luiza Maria Teophilo; Miller, Gretchen R.; Cahill, Anthony T.
  • Hydrological Processes, Vol. 30, Issue 26
  • DOI: 10.1002/hyp.10960

Upscaling transpiration in diverse forests: Insights from a tropical premontane site
journal, December 2017

  • Moore, Georgianne W.; Orozco, Graciela; Aparecido, Luiza M. T.
  • Ecohydrology, Vol. 11, Issue 3
  • DOI: 10.1002/eco.1920

The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
journal, September 2016

  • Novick, Kimberly A.; Ficklin, Darren L.; Stoy, Paul C.
  • Nature Climate Change, Vol. 6, Issue 11
  • DOI: 10.1038/nclimate3114

Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements
journal, December 1987


Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation
journal, March 2012


The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity
journal, December 2006

  • Nejad, A. R.; van Meeteren, U.
  • Journal of Experimental Botany, Vol. 58, Issue 3
  • DOI: 10.1093/jxb/erl234

Influence of Seasonal Variations in Soil Water Availability on Gas Exchange of Tropical Canopy Trees
journal, July 2012


Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests
journal, May 2016

  • Xu, Xiangtao; Medvigy, David; Powers, Jennifer S.
  • New Phytologist, Vol. 212, Issue 1
  • DOI: 10.1111/nph.14009

Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature
journal, June 2005


Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients
journal, December 2013

  • Fortunel, Claire; Ruelle, Julien; Beauchêne, Jacques
  • New Phytologist, Vol. 202, Issue 1
  • DOI: 10.1111/nph.12632

Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes
journal, May 2018

  • Griffin-Nolan, Robert J.; Bushey, Julie A.; Carroll, Charles J. W.
  • Functional Ecology, Vol. 32, Issue 7
  • DOI: 10.1111/1365-2435.13135

Biodiversity hotspots for conservation priorities
journal, February 2000

  • Myers, Norman; Mittermeier, Russell A.; Mittermeier, Cristina G.
  • Nature, Vol. 403, Issue 6772
  • DOI: 10.1038/35002501

Leaf, stem and root tissue strategies across 758 Neotropical tree species
journal, July 2012


Precipitation recycling in the Amazon basin
journal, July 1994

  • Eltahir, E. A. B.; Bras, R. L.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 120, Issue 518
  • DOI: 10.1002/qj.49712051806

Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes
journal, March 2004

  • Hacke, Uwe G.; Sperry, John S.; Pittermann, Jarmila
  • American Journal of Botany, Vol. 91, Issue 3
  • DOI: 10.3732/ajb.91.3.386

Coordination of leaf and stem water transport properties in tropical forest trees
journal, February 2008

  • Meinzer, Frederick C.; Woodruff, David R.; Domec, Jean-Christophe
  • Oecologia, Vol. 156, Issue 1
  • DOI: 10.1007/s00442-008-0974-5

The worldwide leaf economics spectrum
journal, April 2004

  • Wright, Ian J.; Reich, Peter B.; Westoby, Mark
  • Nature, Vol. 428, Issue 6985
  • DOI: 10.1038/nature02403

From tropics to tundra: Global convergence in plant functioning
journal, December 1997

  • Reich, P. B.; Walters, M. B.; Ellsworth, D. S.
  • Proceedings of the National Academy of Sciences, Vol. 94, Issue 25
  • DOI: 10.1073/pnas.94.25.13730

Plasticity in hydraulic architecture of Scots pine across Eurasia
journal, April 2007


Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest
journal, May 2004


Being John Harper: Using evolutionary ideas to improve understanding of global patterns in plant traits
journal, December 2017


Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest
journal, August 2018

  • Maréchaux, Isabelle; Bonal, Damien; Bartlett, Megan K.
  • Functional Ecology, Vol. 32, Issue 10
  • DOI: 10.1111/1365-2435.13188

Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana
journal, August 2008


Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin
journal, February 2007


Stomatal responses to changes in humidity in plants growing in the desert
journal, January 1972

  • Schulze, E. -D.; Lange, O. L.; Buschbom, U.
  • Planta, Vol. 108, Issue 3
  • DOI: 10.1007/BF00384113

Tree water dynamics in a drying and warming world: Future tree water dynamics
journal, June 2017

  • Grossiord, Charlotte; Sevanto, Sanna; Borrego, Isaac
  • Plant, Cell & Environment, Vol. 40, Issue 9
  • DOI: 10.1111/pce.12991

Xylem plasticity in response to climate
journal, August 2012


Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration
journal, October 2015

  • Zhang, Ke; Kimball, John S.; Nemani, Ramakrishna R.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15956

Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation
journal, March 2018


Leaf Anatomy and Stomatal Morphology of Greenhouse Roses Grown at Moderate or High Air Humidity
journal, July 2003

  • Torre, Sissel; Fjeld, Tove; Gislerød, Hans Ragnar
  • Journal of the American Society for Horticultural Science, Vol. 128, Issue 4
  • DOI: 10.21273/JASHS.128.4.0598

Vegetation demographics in Earth System Models: A review of progress and priorities
journal, October 2017

  • Fisher, Rosie A.; Koven, Charles D.; Anderegg, William R. L.
  • Global Change Biology, Vol. 24, Issue 1
  • DOI: 10.1111/gcb.13910

Modulation of leaf economic traits and trait relationships by climate: Modulation of leaf traits by climate
journal, August 2005


Improved allometric models to estimate the aboveground biomass of tropical trees
journal, June 2014

  • Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto
  • Global Change Biology, Vol. 20, Issue 10
  • DOI: 10.1111/gcb.12629

Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees
journal, November 2010


Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?
journal, July 2013


SAPFLUXNET: towards a global database of sap flow measurements
journal, November 2016

  • Poyatos, Rafael; Granda, Víctor; Molowny-Horas, Roberto
  • Tree Physiology, Vol. 36, Issue 12
  • DOI: 10.1093/treephys/tpw110

Contribution of transpiration to forest ambient vapour based on isotopic measurements
journal, October 1997


Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest
journal, July 2018

  • Brum, Mauro; Vadeboncoeur, Matthew A.; Ivanov, Valeriy
  • Journal of Ecology, Vol. 107, Issue 1
  • DOI: 10.1111/1365-2745.13022

The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest
journal, March 2017

  • Cosme, Luiza H. M.; Schietti, Juliana; Costa, Flávia R. C.
  • New Phytologist, Vol. 215, Issue 1
  • DOI: 10.1111/nph.14508

The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto
journal, February 2014


A global analysis of parenchyma tissue fractions in secondary xylem of seed plants
journal, November 2015

  • Morris, Hugh; Plavcová, Lenka; Cvecko, Patrick
  • New Phytologist, Vol. 209, Issue 4
  • DOI: 10.1111/nph.13737

Optimal stomatal behavior with competition for water and risk of hydraulic impairment
journal, October 2016

  • Wolf, Adam; Anderegg, William R. L.; Pacala, Stephen W.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 46
  • DOI: 10.1073/pnas.1615144113

The redistribution of soil water by tree root systems
journal, July 1998

  • Burgess, Stephen S. O.; Adams, Mark A.; Turner, Neil C.
  • Oecologia, Vol. 115, Issue 3
  • DOI: 10.1007/s004420050521

High Humidity Induces Abscisic Acid 8′-Hydroxylase in Stomata and Vasculature to Regulate Local and Systemic Abscisic Acid Responses in Arabidopsis
journal, November 2008

  • Okamoto, Masanori; Tanaka, Yoko; Abrams, Suzanne R.
  • Plant Physiology, Vol. 149, Issue 2
  • DOI: 10.1104/pp.108.130823

Manipulative experiments demonstrate how long-term soil moisture changes alter controls of plant water use
journal, August 2018


A unified nomenclature for sap flow measurements
journal, January 1997


The Twentieth Century Reanalysis Project
journal, January 2011

  • Compo, G. P.; Whitaker, J. S.; Sardeshmukh, P. D.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 654
  • DOI: 10.1002/qj.776

A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods
journal, July 2010


Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED)
journal, January 2015

  • Fisher, R. A.; Muszala, S.; Verteinstein, M.
  • Geoscientific Model Development, Vol. 8, Issue 11
  • DOI: 10.5194/gmd-8-3593-2015

Infrared heater system for warming tropical forest understory plants and soils
journal, January 2018

  • Kimball, Bruce A.; Alonso-Rodríguez, Aura M.; Cavaleri, Molly A.
  • Ecology and Evolution, Vol. 8, Issue 4
  • DOI: 10.1002/ece3.3780

Regulation of water flux through tropical forest canopy trees: Do universal rules apply?
journal, January 2001


How do lianas and trees change their vascular strategy in seasonal versus rain forest?
journal, October 2019

  • Dias, Arildo S.; Oliveira, Rafael S.; Martins, Fernando R.
  • Perspectives in Plant Ecology, Evolution and Systematics, Vol. 40
  • DOI: 10.1016/j.ppees.2019.125465

Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land
journal, April 2018

  • Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.
  • Nature Climate Change, Vol. 8, Issue 5
  • DOI: 10.1038/s41558-018-0144-7

Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees
journal, July 2003


On the importance of cascading moisture recycling in South America
journal, January 2014

  • Zemp, D. C.; Schleussner, C. -F.; Barbosa, H. M. J.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 23
  • DOI: 10.5194/acp-14-13337-2014

A Method for Scaling Vegetation Dynamics: the Ecosystem Demography Model (ed)
journal, November 2001


Broad Anatomical Variation within a Narrow Wood Density Range—A Study of Twig Wood across 69 Australian Angiosperms
journal, April 2015


Water loss and postharvest characteristics of cut roses grown at high or moderate relative air humidity
journal, July 2001


Transpiration in the global water cycle
journal, June 2014


Tropical forest cover change in the 1990s and options for future monitoring
journal, February 2005

  • Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 360, Issue 1454
  • DOI: 10.1098/rstb.2004.1590

The value of wet leaves
journal, June 2018

  • Dawson, Todd E.; Goldsmith, Gregory R.
  • New Phytologist, Vol. 219, Issue 4
  • DOI: 10.1111/nph.15307

Baseliner: An open-source, interactive tool for processing sap flux data from thermal dissipation probes
journal, January 2016


Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)
journal, January 2016

  • Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie
  • Geoscientific Model Development, Vol. 9, Issue 11
  • DOI: 10.5194/gmd-9-4227-2016

Progressing from ‘functional’ to mechanistic traits
journal, May 2017


A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations
journal, November 2017

  • Christianson, Danielle S.; Varadharajan, Charuleka; Christoffersen, Bradley
  • Ecological Informatics, Vol. 42
  • DOI: 10.1016/j.ecoinf.2017.06.002

Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests
journal, April 2006

  • Wright, Ian J.; Ackerly, David D.; Bongers, Frans
  • Annals of Botany, Vol. 99, Issue 5
  • DOI: 10.1093/aob/mcl066

Ecology of Tropical Dry Forest
journal, November 1986


Implementing Plant Hydraulics in the Community Land Model, Version 5
journal, February 2019

  • Kennedy, Daniel; Swenson, Sean; Oleson, Keith W.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 2
  • DOI: 10.1029/2018MS001500

Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost: A stomatal optimization model
journal, December 2016

  • Sperry, John S.; Venturas, Martin D.; Anderegg, William R. L.
  • Plant, Cell & Environment, Vol. 40, Issue 6
  • DOI: 10.1111/pce.12852

Decoupled leaf and stem economics in rain forest trees: Decoupled leaf and stem economics spectra
journal, August 2010


A Method for Scaling Vegetation Dynamics: The Ecosystem Demography Model (ED)
journal, November 2001

  • Moorcroft, P. R.; Hurtt, G. C.; Pacala, S. W.
  • Ecological Monographs, Vol. 71, Issue 4
  • DOI: 10.2307/3100036