skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 23, 2020

Title: Deciphering the Stress State of Seismogenic Faults in Oklahoma and Southern Kansas Based on an Improved Stress Map

Abstract

Fault location and geometry are prime considerations in the reactivation of preexisting faults. Here, we combine relocated earthquake catalogs and focal mechanisms to delineate seismogenic faults in Oklahoma and southern Kansas and analyze their stress state. Initially, we identify and map seismogenic faults based on earthquake clustering. We then obtain an improved stress map using 2,047 high-quality focal mechanisms. The regional stress map shows a gradual transition from oblique normal faulting in western Oklahoma to strike-slip faulting in central and eastern Oklahoma. Stress amplitude ratio shows a strong correlation with pore pressure from hydrogeologic models, suggesting that pore pressure exhibits a measurable influence on stress patterns. Finally, we assess fault stress state via 3-D Mohr circles; a parameter understress is used to quantify the level of fault criticality (with 0 meaning critically stressed faults and 1 meaning faults with no applied shear stress). Our findings suggest that most active faults have near vertical planes (planarity >0.8 and dip >70°), and there is a strong correlation between fault length and maximum magnitude on each fault. The fault trends show prominent conjugate sets that strike [55–75°] and [105–125°]. A comparison with mapped sedimentary faults and basement fractures reveals common tectonic control. Basedmore » on 3-D Mohr circles, we find that 78% of the faults are critically stressed (understress ≤0.2), while several seismogenic faults are misoriented with high understress (>0.4). Fault geometry and local stress fields may be used to evaluate potential seismic hazard, as the largest earthquakes tend to occur on long, critically stressed faults.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]
  1. Univ. of Oklahoma, Norman, OK (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. San Diego State Univ., CA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1581273
Report Number(s):
LA-UR-18-27043
Journal ID: ISSN 2169-9313
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Solid Earth
Additional Journal Information:
Journal Volume: 124; Journal Issue: 12; Journal ID: ISSN 2169-9313
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
induced seismicity; stress field; stress state of fault; pore pressure; sequence evolution; earthquake hazard

Citation Formats

Qin, Yan, Chen, Xiaowei, Walter, Jacob I., Haffener, Jackson, Trugman, Daniel T., Carpenter, Brett M., Weingarten, Matthew, and Kolawole, Folarin. Deciphering the Stress State of Seismogenic Faults in Oklahoma and Southern Kansas Based on an Improved Stress Map. United States: N. p., 2019. Web. doi:10.1029/2019JB018377.
Qin, Yan, Chen, Xiaowei, Walter, Jacob I., Haffener, Jackson, Trugman, Daniel T., Carpenter, Brett M., Weingarten, Matthew, & Kolawole, Folarin. Deciphering the Stress State of Seismogenic Faults in Oklahoma and Southern Kansas Based on an Improved Stress Map. United States. doi:10.1029/2019JB018377.
Qin, Yan, Chen, Xiaowei, Walter, Jacob I., Haffener, Jackson, Trugman, Daniel T., Carpenter, Brett M., Weingarten, Matthew, and Kolawole, Folarin. Sat . "Deciphering the Stress State of Seismogenic Faults in Oklahoma and Southern Kansas Based on an Improved Stress Map". United States. doi:10.1029/2019JB018377.
@article{osti_1581273,
title = {Deciphering the Stress State of Seismogenic Faults in Oklahoma and Southern Kansas Based on an Improved Stress Map},
author = {Qin, Yan and Chen, Xiaowei and Walter, Jacob I. and Haffener, Jackson and Trugman, Daniel T. and Carpenter, Brett M. and Weingarten, Matthew and Kolawole, Folarin},
abstractNote = {Fault location and geometry are prime considerations in the reactivation of preexisting faults. Here, we combine relocated earthquake catalogs and focal mechanisms to delineate seismogenic faults in Oklahoma and southern Kansas and analyze their stress state. Initially, we identify and map seismogenic faults based on earthquake clustering. We then obtain an improved stress map using 2,047 high-quality focal mechanisms. The regional stress map shows a gradual transition from oblique normal faulting in western Oklahoma to strike-slip faulting in central and eastern Oklahoma. Stress amplitude ratio shows a strong correlation with pore pressure from hydrogeologic models, suggesting that pore pressure exhibits a measurable influence on stress patterns. Finally, we assess fault stress state via 3-D Mohr circles; a parameter understress is used to quantify the level of fault criticality (with 0 meaning critically stressed faults and 1 meaning faults with no applied shear stress). Our findings suggest that most active faults have near vertical planes (planarity >0.8 and dip >70°), and there is a strong correlation between fault length and maximum magnitude on each fault. The fault trends show prominent conjugate sets that strike [55–75°] and [105–125°]. A comparison with mapped sedimentary faults and basement fractures reveals common tectonic control. Based on 3-D Mohr circles, we find that 78% of the faults are critically stressed (understress ≤0.2), while several seismogenic faults are misoriented with high understress (>0.4). Fault geometry and local stress fields may be used to evaluate potential seismic hazard, as the largest earthquakes tend to occur on long, critically stressed faults.},
doi = {10.1029/2019JB018377},
journal = {Journal of Geophysical Research. Solid Earth},
number = 12,
volume = 124,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 23, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence: DAMPED REGIONAL-SCALE STRESS INVERSIONS
journal, November 2006

  • Hardebeck, Jeanne L.; Michael, Andrew J.
  • Journal of Geophysical Research: Solid Earth, Vol. 111, Issue B11
  • DOI: 10.1029/2005JB004144

Geomechanical Sensitivities of Injection-Induced Earthquakes
journal, September 2018

  • Levandowski, Will; Weingarten, Matthew; Walsh, Rall
  • Geophysical Research Letters, Vol. 45, Issue 17
  • DOI: 10.1029/2018GL077551

Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs
journal, September 2015


Multiscale Analysis of Spatiotemporal Relationship Between Injection and Seismicity in Oklahoma
journal, October 2018

  • Haffener, Jackson; Chen, Xiaowei; Murray, Kyle
  • Journal of Geophysical Research: Solid Earth, Vol. 123, Issue 10
  • DOI: 10.1029/2018JB015512

Impact of fluid injection on fracture reactivation at The Geysers geothermal field: Fault Reactivation Potential The Geysers
journal, October 2016

  • Martínez-Garzón, Patricia; Kwiatek, Grzegorz; Bohnhoff, Marco
  • Journal of Geophysical Research: Solid Earth, Vol. 121, Issue 10
  • DOI: 10.1002/2016JB013137

Induced seismicity provides insight into why earthquake ruptures stop
journal, December 2017

  • Galis, Martin; Ampuero, Jean Paul; Mai, P. Martin
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.aap7528

Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas
journal, September 2018

  • Langenbruch, Cornelius; Weingarten, Matthew; Zoback, Mark D.
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06167-4

A refined methodology for stress inversions of earthquake focal mechanisms: Refined Stress Inversion Methodology
journal, December 2016

  • Martínez-Garzón, Patricia; Ben-Zion, Yehuda; Abolfathian, Niloufar
  • Journal of Geophysical Research: Solid Earth, Vol. 121, Issue 12
  • DOI: 10.1002/2016JB013493

Injection-induced seismicity: Poroelastic and earthquake nucleation effects: INJECTION INDUCED SEISMICITY
journal, July 2015

  • Segall, P.; Lu, S.
  • Journal of Geophysical Research: Solid Earth, Vol. 120, Issue 7
  • DOI: 10.1002/2015JB012060

Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation
journal, October 2014


An Experiment in Earthquake Control at Rangely, Colorado
journal, March 1976


Optimal Fault Orientations within Oklahoma
journal, September 2013


Role of Fluid Pressure in Mechanics of Overthrust Faulting
journal, January 1959


A stochastic model for induced seismicity based on non-linear pressure diffusion and irreversible permeability enhancement
journal, May 2013

  • Gischig, Valentin S.; Wiemer, Stefan
  • Geophysical Journal International, Vol. 194, Issue 2
  • DOI: 10.1093/gji/ggt164

A new method to identify earthquake swarms applied to seismicity near the San Jacinto Fault, California
journal, February 2016

  • Zhang, Qiong; Shearer, Peter M.
  • Geophysical Journal International, Vol. 205, Issue 2
  • DOI: 10.1093/gji/ggw073

Waveform‐Relocated Earthquake Catalog for Oklahoma and Southern Kansas Illuminates the Regional Fault Network
journal, July 2017

  • Schoenball, Martin; Ellsworth, William L.
  • Seismological Research Letters, Vol. 88, Issue 5
  • DOI: 10.1785/0220170083

State of stress in Texas: Implications for induced seismicity: STATE OF STRESS IN TEXAS
journal, October 2016

  • Lund Snee, Jens-Erik; Zoback, Mark D.
  • Geophysical Research Letters, Vol. 43, Issue 19
  • DOI: 10.1002/2016GL070974

High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland: HIGH FLUID PRESSURE IN BASEL
journal, July 2012

  • Terakawa, Toshiko; Miller, Stephen A.; Deichmann, Nicholas
  • Journal of Geophysical Research: Solid Earth, Vol. 117, Issue B7
  • DOI: 10.1029/2011JB008980

Modeling Injection‐Induced Seismicity with the Physics‐Based Earthquake Simulator RSQSim
journal, June 2015

  • Dieterich, James H.; Richards‐Dinger, Keith B.; Kroll, Kayla A.
  • Seismological Research Letters, Vol. 86, Issue 4
  • DOI: 10.1785/0220150057

Induced earthquake magnitudes are as large as (statistically) expected: INDUCED EARTHQUAKE MAXIMUM MAGNITUDES
journal, June 2016

  • van der Elst, Nicholas J.; Page, Morgan T.; Weiser, Deborah A.
  • Journal of Geophysical Research: Solid Earth, Vol. 121, Issue 6
  • DOI: 10.1002/2016JB012818

The Effects of Varying Injection Rates in Osage County, Oklahoma, on the 2016 M w  5.8 Pawnee Earthquake
journal, May 2017

  • Barbour, Andrew J.; Norbeck, Jack H.; Rubinstein, Justin L.
  • Seismological Research Letters, Vol. 88, Issue 4
  • DOI: 10.1785/0220170003

In Situ Stress and Active Faulting in Oklahoma
journal, December 2016

  • Alt, Richard C.; Zoback, Mark D.
  • Bulletin of the Seismological Society of America, Vol. 107, Issue 1
  • DOI: 10.1785/0120160156

MSATSI: A MATLAB Package for Stress Inversion Combining Solid Classic Methodology, a New Simplified User-Handling, and a Visualization Tool
journal, July 2014

  • Martinez-Garzon, P.; Kwiatek, G.; Ickrath, M.
  • Seismological Research Letters, Vol. 85, Issue 4
  • DOI: 10.1785/0220130189

Crustal stress field in southern California and its implications for fault mechanics
journal, October 2001

  • Hardebeck, Jeanne L.; Hauksson, Egill
  • Journal of Geophysical Research: Solid Earth, Vol. 106, Issue B10
  • DOI: 10.1029/2001JB000292

Temporal Correlation Between Seismic Moment and Injection Volume for an Induced Earthquake Sequence in Central Oklahoma
journal, April 2018

  • Chen, Xiaowei; Haffener, Jackson; Goebel, Thomas H. W.
  • Journal of Geophysical Research: Solid Earth, Vol. 123, Issue 4
  • DOI: 10.1002/2017JB014694

A Systematic Assessment of the Spatiotemporal Evolution of Fault Activation Through Induced Seismicity in Oklahoma and Southern Kansas: Induced Seismicity Evolution in Oklahoma
journal, December 2017

  • Schoenball, Martin; Ellsworth, William L.
  • Journal of Geophysical Research: Solid Earth, Vol. 122, Issue 12
  • DOI: 10.1002/2017JB014850

Temporal variation of frictional strength in an earthquake swarm in NE Japan caused by fluid migration: TEMPORAL VARIATION OF FRICTION
journal, August 2016

  • Yoshida, Keisuke; Hasegawa, Akira; Yoshida, Takeyoshi
  • Journal of Geophysical Research: Solid Earth, Vol. 121, Issue 8
  • DOI: 10.1002/2016JB013022

Friction of rocks
journal, January 1978

  • Byerlee, J.
  • Pure and Applied Geophysics PAGEOPH, Vol. 116, Issue 4-5
  • DOI: 10.1007/BF00876528

Stress tensor changes related to fluid injection at The Geysers geothermal field, California: STRESS TENSOR CHANGES AT THE GEYSERS
journal, June 2013

  • Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz
  • Geophysical Research Letters, Vol. 40, Issue 11
  • DOI: 10.1002/grl.50438

Determination of stress from slip data: Faults and folds
journal, December 1984


Iterative joint inversion for stress and fault orientations from focal mechanisms
journal, July 2014

  • Vavryčuk, Václav
  • Geophysical Journal International, Vol. 199, Issue 1
  • DOI: 10.1093/gji/ggu224

<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-01-01">January 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Whitmeyer, Steven</span> </li> <li> Geosphere, Vol. 3, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/GES00055.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/GES00055.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/2016GL070421" target="_blank" rel="noopener noreferrer" class="name">Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence: POROELASTIC STRESSING-INDUCED SEISMICITY<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-08-26">August 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Deng, Kai; Liu, Yajing; Harrington, Rebecca M.</span> </li> <li> Geophysical Research Letters, Vol. 43, Issue 16</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/2016GL070421" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/2016GL070421<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/2016GL070861" target="_blank" rel="noopener noreferrer" class="name">Far-field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure: FAIRVIEW EARTHQUAKE ON 13 FEBRUARY 2016<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-10-11">October 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Yeck, W. L.; Weingarten, M.; Benz, H. M.</span> </li> <li> Geophysical Research Letters, Vol. 43, Issue 19</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/2016GL070861" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/2016GL070861<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1126/science.1225942" target="_blank" rel="noopener noreferrer" class="name">Injection-Induced Earthquakes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-07-11">July 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ellsworth, W. L.</span> </li> <li> Science, Vol. 341, Issue 6142</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1126/science.1225942" class="text-muted" target="_blank" rel="noopener noreferrer">10.1126/science.1225942<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/2012JB009209" target="_blank" rel="noopener noreferrer" class="name">Nucleation and arrest of dynamic slip on a pressurized fault: NUCLEATION ON PRESSURIZED FAULT<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-10-01">October 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Garagash, Dmitry I.; Germanovich, Leonid N.</span> </li> <li> Journal of Geophysical Research: Solid Earth, Vol. 117, Issue B10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/2012JB009209" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/2012JB009209<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/2016GL070145" target="_blank" rel="noopener noreferrer" class="name">Sensitivity of stress inversion of focal mechanisms to pore pressure changes: Stress Inversion and Pore Pressure<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-08-24">August 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Martínez-Garzón, Patricia; Vavryčuk, Václav; Kwiatek, Grzegorz</span> </li> <li> Geophysical Research Letters, Vol. 43, Issue 16</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/2016GL070145" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/2016GL070145<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1190/tle37020135.1" target="_blank" rel="noopener noreferrer" class="name">What controls the maximum magnitude of injection-induced earthquakes?<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-02-01">February 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Eaton, David W.; Igonin, Nadine</span> </li> <li> The Leading Edge, Vol. 37, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1190/tle37020135.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1190/tle37020135.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00024-014-0826-7" target="_blank" rel="noopener noreferrer" class="name">Formation and Suppression of Strike–Slip Fault Systems<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-03-30">March 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Curren, Ivy S.; Bird, Peter</span> </li> <li> Pure and Applied Geophysics, Vol. 171, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00024-014-0826-7" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00024-014-0826-7<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.precamres.2014.11.024" target="_blank" rel="noopener noreferrer" class="name">Mesoproterozoic-trans-Laurentian magmatism: A synthesis of continent-wide age distributions, new SIMS U–Pb ages, zircon saturation temperatures, and Hf and Nd isotopic compositions<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-08-01">August 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Bickford, M. E.; Van Schmus, W. R.; Karlstrom, K. E.</span> </li> <li> Precambrian Research, Vol. 265</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.precamres.2014.11.024" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.precamres.2014.11.024<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1785/0120170209" target="_blank" rel="noopener noreferrer" class="name">The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-02-20">February 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Rubinstein, Justin L.; Ellsworth, William L.; Dougherty, Sara L.</span> </li> <li> Bulletin of the Seismological Society of America, Vol. 108, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1785/0120170209" class="text-muted" target="_blank" rel="noopener noreferrer">10.1785/0120170209<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1130/G31457.1" target="_blank" rel="noopener noreferrer" class="name">High-pressure fluid at hypocentral depths in the L'Aquila region inferred from earthquake focal mechanisms<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-10-12">October 2010</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Terakawa, Toshiko; Zoporowski, Anna; Galvan, Boris</span> </li> <li> Geology, Vol. 38, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/G31457.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/G31457.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1785/0120170337" target="_blank" rel="noopener noreferrer" class="name">Stress Orientations in the Fort Worth Basin, Texas, Determined from Earthquake Focal Mechanisms<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-04-10">April 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Quinones, Louis Andrew; DeShon, Heather R.; Magnani, Maria B.</span> </li> <li> Bulletin of the Seismological Society of America, Vol. 108, Issue 3A</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1785/0120170337" class="text-muted" target="_blank" rel="noopener noreferrer">10.1785/0120170337<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1190/geo2010-0349.1" target="_blank" rel="noopener noreferrer" class="name">Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2011-11-01">November 2011</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shapiro, Serge A.; Krüger, Oliver S.; Dinske, Carsten</span> </li> <li> GEOPHYSICS, Vol. 76, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1190/geo2010-0349.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1190/geo2010-0349.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1017/S0016756800059987" target="_blank" rel="noopener noreferrer" class="name">The Mechanics of Oblique Slip Faulting<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1959-04-01">April 1959</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Bott, M. H. P.</span> </li> <li> Geological Magazine, Vol. 96, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1017/S0016756800059987" class="text-muted" target="_blank" rel="noopener noreferrer">10.1017/S0016756800059987<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2" target="_blank" rel="noopener noreferrer" class="name">Strike-slip faults<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1988-11-01">November 1988</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sylvester, Arthur G.</span> </li> <li> Geological Society of America Bulletin, Vol. 100, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1785/0120170335" target="_blank" rel="noopener noreferrer" class="name">Stress‐Drop Variations of Induced Earthquakes in Oklahoma<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-05-01">May 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wu, Qimin; Chapman, Martin; Chen, Xiaowei</span> </li> <li> Bulletin of the Seismological Society of America, Vol. 108, Issue 3A</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1785/0120170335" class="text-muted" target="_blank" rel="noopener noreferrer">10.1785/0120170335<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1029/92JB00132" target="_blank" rel="noopener noreferrer" class="name">First- and second-order patterns of stress in the lithosphere: The World Stress Map Project<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1992-01-01">January 1992</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zoback, Mary Lou</span> </li> <li> Journal of Geophysical Research, Vol. 97, Issue B8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1029/92JB00132" class="text-muted" target="_blank" rel="noopener noreferrer">10.1029/92JB00132<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1126/sciadv.aau4065" target="_blank" rel="noopener noreferrer" class="name">Stabilization of fault slip by fluid injection in the laboratory and in situ<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-03-01">March 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Cappa, Frédéric; Scuderi, Marco Maria; Collettini, Cristiano</span> </li> <li> Science Advances, Vol. 5, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1126/sciadv.aau4065" class="text-muted" target="_blank" rel="noopener noreferrer">10.1126/sciadv.aau4065<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/2016GL071685" target="_blank" rel="noopener noreferrer" class="name">Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts: The 3 September 2016,<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-01-21">January 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Yeck, W. L.; Hayes, G. P.; McNamara, D. E.</span> </li> <li> Geophysical Research Letters, Vol. 44, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/2016GL071685" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/2016GL071685<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1086/625831" target="_blank" rel="noopener noreferrer" class="name">Geometry of Shearing Stress and Relation to Faulting<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1951-03-01">March 1951</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wallace, Robert E.</span> </li> <li> The Journal of Geology, Vol. 59, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1086/625831" class="text-muted" target="_blank" rel="noopener noreferrer">10.1086/625831<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/2013JB010597" target="_blank" rel="noopener noreferrer" class="name">Maximum magnitude earthquakes induced by fluid injection: Limits on fluid injection earthquakes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-02-01">February 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> McGarr, A.</span> </li> <li> Journal of Geophysical Research: Solid Earth, Vol. 119, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/2013JB010597" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/2013JB010597<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1130/G34045.1" target="_blank" rel="noopener noreferrer" class="name">Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-06-01">June 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Keranen, Katie M.; Savage, Heather M.; Abers, Geoffrey A.</span> </li> <li> Geology, Vol. 41, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/G34045.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/G34045.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1126/science.1255802" target="_blank" rel="noopener noreferrer" class="name">Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-07-03">July 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Keranen, K. M.; Weingarten, M.; Abers, G. A.</span> </li> <li> Science, Vol. 345, Issue 6195</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1126/science.1255802" class="text-muted" target="_blank" rel="noopener noreferrer">10.1126/science.1255802<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1126/science.161.3848.1301" target="_blank" rel="noopener noreferrer" class="name">The Denver EarthquakeS<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1968-09-27">September 1968</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Healy, J. H.; Rubey, W. W.; Griggs, D. T.</span> </li> <li> Science, Vol. 161, Issue 3848</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1126/science.161.3848.1301" class="text-muted" target="_blank" rel="noopener noreferrer">10.1126/science.161.3848.1301<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.epsl.2017.05.011" target="_blank" rel="noopener noreferrer" class="name">The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-08-01">August 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Goebel, T. H. W.; Weingarten, M.; Chen, X.</span> </li> <li> Earth and Planetary Science Letters, Vol. 472</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.epsl.2017.05.011" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.epsl.2017.05.011<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1126/sciadv.aav7172" target="_blank" rel="noopener noreferrer" class="name">The role of aseismic slip in hydraulic fracturing–induced seismicity<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-08-01">August 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Eyre, Thomas S.; Eaton, David W.; Garagash, Dmitry I.</span> </li> <li> Science Advances, Vol. 5, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1126/sciadv.aav7172" class="text-muted" target="_blank" rel="noopener noreferrer">10.1126/sciadv.aav7172<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div></div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (61)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar records in OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1420310-small-scale-field-test-demonstrating-co2-sequestration-arbuckle-saline-aquifer-co2-eor-wellington-field-sumner-county-kansas" itemprop="url">Small Scale Field Test Demonstrating CO <sub>2</sub> Sequestration In Arbuckle Saline Aquifer And By CO <sub>2</sub>-Eor At Wellington Field, Sumner County, Kansas</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Holubnyak, Yevhen Eugene</span> ; <span class="author">Watney, Lynn</span> ; <span class="author">Hollenbach, Jennifer</span> ; <span class="author">...</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">The objectives of this project are to understand the processes that occur when a maximum of 70,000 metric tonnes of CO <sub>2</sub> are injected into two different formations to evaluate the response in different lithofacies and depositional environments. The evaluation will be accomplished through the use of both in situ and indirect MVA (monitoring, verification, and accounting) technologies. The project will optimize for carbon storage accounting for 99% of the CO <sub>2</sub> using lab and field testing and comprehensive characterization and modeling techniques. Site characterization and CO <sub>2</sub> injection should demonstrate state-of-the-art MVA tools and techniques to monitor and visualize<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> the injected CO <sub>2</sub> plume and to refine geomodels developed using nearly continuous core, exhaustive wireline logs, and well tests and a multi-component 3-D seismic survey. Reservoir simulation studies will map the injected CO <sub>2</sub> plume and estimate tonnage of CO <sub>2</sub> stored in solution, as residual gas, and by mineralization and integrate MVA results and reservoir models shall be used to evaluate CO <sub>2</sub> leakage. A rapid-response mitigation plan was developed to minimize CO <sub>2</sub> leakage and provide a comprehensive risk management strategy. The CO <sub>2</sub> was intended to be supplied from a reliable facility and have an adequate delivery and quality of CO <sub>2</sub>. However, several unforeseen circumstances complicated this plan: (1) the initially negotiated CO <sub>2</sub> supply facility went offline and contracts associated with CO <sub>2</sub> supply had to be renegotiated, (2) a UIC Class VI permit proved to be difficult to obtain due to the experimental nature of the project. Both subjects are detailed in separate deliverables attached to this report. The CO <sub>2</sub> enhanced oil recovery (EOR) and geologic storage in Mississippian carbonate reservoir was sucessully deployed. Approximately 20,000 metric tons of CO <sub>2</sub> was injected in the upper part of the Mississippian reservoir to verify CO <sub>2</sub> EOR viability in carbonate reservoirs and evaluate a potential of transitioning to geologic CO <sub>2</sub> storage through EOR. A total of 1,101 truckloads, 19,803 metric tons—an average of 120 tonnes per day—were delivered over the course of injection that lasted from January 9 to June 21, 2016. After cessation of CO <sub>2</sub> injection, the KGS 2-32 well was converted to water injector and continues to operate. CO <sub>2</sub> EOR progression in the field was monitored weekly with fluid level, temperature, and production recording and formation fluid composition sampling. It is important to note that normally, CO <sub>2</sub> EOR pilots are less efficient than commercial operations due to lack of directional and precise well control, lack of surface facilities for CO <sub>2</sub> recycling, and other factors. As a result of this pilot CO <sub>2</sub> injection, the observed incremental average oil production increase was ~68% with only ~18% of injected CO <sub>2</sub> produced back. Decline curve analysis forecasts of additional cumulative oil produced were 32.44M STB to the end of 2027. Wellington Mississippian pilot efficiency by the end of forecast calculations is 11 MCF per barrel of produced oil. Using 32M STB oil production and $1,964,063 cost of CO <sub>2</sub>, CO <sub>2</sub> EOR cost per barrel of oil production is ~$60. Simple but robust monitoring technologies proved to be very efficient in detecting and locating CO <sub>2</sub>. High CO <sub>2</sub> reservoir retentions with low yields within an actively producing field could help to estimate real-world risks of CO <sub>2</sub> geological storage for future projects. The Wellington Field CO <sub>2</sub> EOR was executed in a controlled environment with high efficiency. This case study proves that CO <sub>2</sub> EOR could be successfully applied in Kansas carbonate reservoirs if CO <sub>2</sub> sources and associated infrastructure are available. Recent developments in unconventional resources development in Mid-Continent USA and associated large volume disposal of backflow water and the resulting seismic activity have brought more focus and attention to the Arbuckle Group in southern Kansas. Despite the commercial interest, limited essential information about reservoir properties and structural elements has impeded the management and regulation of disposal, an issue brought to the forefront by recent seismicity in and near areas of large volumes and rates of brine disposal. The Kansas Geological Survey (KGS) collected, compiled, and analyzed available data, including well logs, core data, step rate tests, drill stem tests, 2-D and 3-D seismic data, water level measurements, and others types of data. Several exploratory wells were drilled and core was collected and modern suites of logs were analyzed. Reservoir properties were populated into several site-specific geological models. The geological models illustrate the highly heterogeneous nature of the Arbuckle Group. Vertical and horizontal variability results in several distinct hydro-stratigraphic units that are the result of both depositional and diagenetic processes. During the course of this project, it has been demonstrated that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and Arbuckle saline aquifer. Analysis of post-stack 3-D seismic data at the Mississippian reservoir showed the response of a gradational velocity transition. Pre-stack gather analysis showed that porosity zones of the Mississippian and Arbuckle reservoirs exhibit characteristic amplitude versus offset (AVO) response. Simultaneous AVO inversion estimated P- and S-impedances. The 3-D survey gather azimuthal anisotropy analysis (AVAZ) provided information about the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of injected CO <sub>2</sub> in KGS well 2-32. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO <sub>2</sub>. Seismicity in the United States midcontinent has increased by orders of magnitude over the past decade. Spatiotemporal correlations of seismicity to wastewater injection operations have suggested that injection-related pore fluid pressure increases are inducing the earthquakes. In this investigation, we examine earthquake occurrence in southern Kansas and northern Oklahoma and its relation to the change in pore pressure. The main source of data comes from the Wellington Array in the Wellington oil field, in Sumner County, Kansas, which has monitored for earthquakes in central Sumner County, Kansas, since early 2015. The seismometer array was established to monitor CO <sub>2</sub> injection operations at Wellington Field. Although no seismicity was detected in association with the spring 2016 Mississippian CO <sub>2</sub> injection, the array has recorded more than 2,500 earthquakes in the region and is providing valuable understanding to induced seismicity. A catalog of earthquakes was built from this data and was analyzed for spatial and temporal changes, stress information, and anisotropy information. The region of seismic concern has been shown to be expanding through use of the Wellington earthquake catalog, which has revealed a northward progression of earthquake activity reaching the metropolitan area of Wichita. The stress orientation was also calculated from this earthquake catalog through focal mechanism inversion. The calculated stress orientation was confirmed through comparison to other stress measurements from well data and previous earthquake studies in the region. With this knowledge of the stress orientation, the anisotropy in the basement could be understood. This allowed for the anisotropy measurements to be correlated to pore pressure increases. The increase in pore pressure was monitored through time-lapse shear-wave anisotropy analysis. Since the onset of the observation period in 2010, the orientation of the fast shear wave has rotated 90°, indicating a change associated with critical pore pressure build up. The time delay between fast and slow shear wave arrivals has increased, indicating a corresponding increase in anisotropy induced by pore pressure rise. In-situ near-basement fluid pressure measurements corroborate the continuous pore pressure increase revealed by the shear-wave anisotropy analysis over the earthquake monitoring period. This research is the first to identify a change in pore fluid pressure in the basement using seismological data and it was recently published in the AAAS journal Science Advances (Nolte et al., 2017). The shear-wave splitting analysis is a novel application of the technique, which can be used in other regions to identify an increase in pore pressure. This increasing pore fluid pressure has become more regionally extensive as earthquakes are occurring in southern Kansas, where they previously were absent. These monitoring techniques and analyses provide new insight into mitigating induced seismicity’s impact on society.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.2172/1420310" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1420310" data-product-type="Technical Report" data-product-subtype="" >10.2172/1420310</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1420310" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1420310" data-product-type="Technical Report" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/972803-modeling-crustal-deformation-rupture-processes-related-upwelling-deep-co2-rich-fluids-during-matsushiro-earthquake-swarm-japan" itemprop="url">Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965-1967 Matsushiro Earthquake Swarm in Japan</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Cappa, F.</span> ; <span class="author">Rutqvist, J.</span> ; <span class="author">Yamamoto, K.</span> <span class="text-muted pubdata"> - Journal of Geophysical Research</span> </span> </div> <div class="abstract">In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring-outflows with changes in chemical compositions as well as carbon dioxide (CO{sub 2}) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modelling, we show that observed crustal deformations and seismicity can have been driven<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> by upwelling of deep CO{sub 2}-rich fluids around the intersection of two fault zones - the regional East Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift, are convincingly explained by a few MPa of pressurization from the upwelling fluid within the critically stressed crust - a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a two order of magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modelling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO{sub 2} in the shallow seismogenic crust. Thus, our study provides further evidence of the important role of deep fluid sources in earthquake fault dynamics and surface deformations.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1029/2009JB006398" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="972803" data-product-type="Journal Article" data-product-subtype="FT" >10.1029/2009JB006398</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/972803" title="Link to document media" target="_blank" rel="noopener" data-ostiid="972803" data-product-type="Journal Article" data-product-subtype="FT" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1136720-slip-dilation-tendency-analysis-patua-geothermal-area" itemprop="url">Slip and Dilation Tendency Analysis of the Patua Geothermal Area</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Dataset</small><span class="authors"> <span class="author">Faulds, James E.</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.15121/1136720" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1136720" data-product-type="Dataset" data-product-subtype="" >10.15121/1136720</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1136720" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1136720" data-product-type="Dataset" data-product-subtype="" >View Dataset</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1136717-slip-dilation-tendency-analysis-tuscarora-geothermal-area" itemprop="url">Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Dataset</small><span class="authors"> <span class="author">Faulds, James E.</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.15121/1136717" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1136717" data-product-type="Dataset" data-product-subtype="" >10.15121/1136717</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1136717" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1136717" data-product-type="Dataset" data-product-subtype="" >View Dataset</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1136718-slip-dilation-tendency-analysis-san-emidio-geothermal-area" itemprop="url">Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Dataset</small><span class="authors"> <span class="author">Faulds, James E.</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.15121/1136718" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1136718" data-product-type="Dataset" data-product-subtype="" >10.15121/1136718</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1136718" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1136718" data-product-type="Dataset" data-product-subtype="" >View Dataset</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="hidden-xs">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.200113.2012.css" rel="stylesheet"> <script src="/pages/js/pages.200113.2012.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.200113.2012.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript><script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript></body> <!-- DOE PAGES v.200113.2012 --> </html>