skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Realization of a Type-II Nodal-Line Semimetal in Mg3Bi2

Abstract

Nodal-line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The type-I NLS phase has been proposed and realized in many compounds, whereas the exotic type-II NLS phase that strongly violates Lorentz symmetry has remained elusive. First-principles calculations show that Mg3Bi2 is a material candidate for the type-II NLS. The band crossing is close to the Fermi level and exhibits the type-II nature of the nodal line in this material. Spin–orbit coupling generates only a small energy gap (≈35 meV) at the nodal points and does not negate the band dispersion of Mg3Bi2 that yields the type-II nodal line. Based on this prediction, Mg3Bi2 single crystals are synthesized and the presence of the type-II nodal lines in the material is confirmed. The angle-resolved photoemission spectroscopy measurements agree well with the first-principles results below the Fermi level and thus strongly suggest Mg3Bi2 as an ideal material platform for studying the as-yet unstudied properties of type-II nodal-line semimetals.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [3];  [7];  [8];  [9];  [10];  [2]
  1. National Cheng Kung Univ., Tainan City (Taiwan). Dept. of Physics
  2. Princeton Univ., NJ (United States). Dept. of Physics
  3. Princeton Univ., NJ (United States). Dept. of Chemistry
  4. Univ. of Missouri, Columbia, MO (United States). Dept. of Physics and AstronomyA
  5. National Tsing Hua Univ., Hsinchu (Taiwan). Dept. of Physics
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  7. Univ. of Connecticut, Storrs, CT (United States). Dept. of Physics
  8. National Tsing Hua Univ., Hsinchu (Taiwan). Dept. of Physics; Academia Sinica, Taipei (Taiwan). Inst. of Physics
  9. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
  10. Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
OSTI Identifier:
1581061
Alternate Identifier(s):
OSTI ID: 1488843
Report Number(s):
BNL-209819-2018-JAAM
Journal ID: ISSN 2198-3844; ark:/13030/qt0396641v
Grant/Contract Number:  
AC02-05CH11231; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Science
Additional Journal Information:
Journal Volume: 6; Journal Issue: 4; Journal ID: ISSN 2198-3844
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; DFT calculations; ARPES; topological materials; topological semimetal; Mg3Bi2

Citation Formats

Chang, Tay-Rong, Pletikosic, Ivo, Kong, Tai, Bian, Guang, Huang, Angus, Denlinger, Jonathan, Kushwaha, Satya K., Sinkovic, Boris, Jeng, Horny-Tay, Valla, Tonica, Xie, Weiwei, and Cava, Robert J. Realization of a Type-II Nodal-Line Semimetal in Mg3Bi2. United States: N. p., 2018. Web. doi:10.1002/advs.201800897.
Chang, Tay-Rong, Pletikosic, Ivo, Kong, Tai, Bian, Guang, Huang, Angus, Denlinger, Jonathan, Kushwaha, Satya K., Sinkovic, Boris, Jeng, Horny-Tay, Valla, Tonica, Xie, Weiwei, & Cava, Robert J. Realization of a Type-II Nodal-Line Semimetal in Mg3Bi2. United States. doi:10.1002/advs.201800897.
Chang, Tay-Rong, Pletikosic, Ivo, Kong, Tai, Bian, Guang, Huang, Angus, Denlinger, Jonathan, Kushwaha, Satya K., Sinkovic, Boris, Jeng, Horny-Tay, Valla, Tonica, Xie, Weiwei, and Cava, Robert J. Wed . "Realization of a Type-II Nodal-Line Semimetal in Mg3Bi2". United States. doi:10.1002/advs.201800897. https://www.osti.gov/servlets/purl/1581061.
@article{osti_1581061,
title = {Realization of a Type-II Nodal-Line Semimetal in Mg3Bi2},
author = {Chang, Tay-Rong and Pletikosic, Ivo and Kong, Tai and Bian, Guang and Huang, Angus and Denlinger, Jonathan and Kushwaha, Satya K. and Sinkovic, Boris and Jeng, Horny-Tay and Valla, Tonica and Xie, Weiwei and Cava, Robert J.},
abstractNote = {Nodal-line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The type-I NLS phase has been proposed and realized in many compounds, whereas the exotic type-II NLS phase that strongly violates Lorentz symmetry has remained elusive. First-principles calculations show that Mg3Bi2 is a material candidate for the type-II NLS. The band crossing is close to the Fermi level and exhibits the type-II nature of the nodal line in this material. Spin–orbit coupling generates only a small energy gap (≈35 meV) at the nodal points and does not negate the band dispersion of Mg3Bi2 that yields the type-II nodal line. Based on this prediction, Mg3Bi2 single crystals are synthesized and the presence of the type-II nodal lines in the material is confirmed. The angle-resolved photoemission spectroscopy measurements agree well with the first-principles results below the Fermi level and thus strongly suggest Mg3Bi2 as an ideal material platform for studying the as-yet unstudied properties of type-II nodal-line semimetals.},
doi = {10.1002/advs.201800897},
journal = {Advanced Science},
number = 4,
volume = 6,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1. Figure 1.: Crystal structure and bulk bands of Mg3Bi2. a) The lattice structure of Mg3Bi2, the blue and orange balls indicate the Mg and Bi atoms, respectively. b) Powder X-ray diffraction (PXRD) pattern. The green arrows in the PXRD pattern correspond to the remaining Bi flux on the sample surface.more » c) Bulk Brillouin zone and projected (001)-surface Brillouin zone. d) Bulk band structure without the inclusion of spin-orbit coupling. e) Bulk bands in d) with atomic orbital projection. f) and g) Same as d) and e) but with the inclusion of spin-orbit coupling.« less

Save / Share:

Works referenced in this record:

Topological insulators and superconductors
journal, October 2011


Colloquium: Topological insulators
journal, November 2010


Weyl Semimetal in a Topological Insulator Multilayer
journal, September 2011


Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


Discovery of a Weyl fermion semimetal and topological Fermi arcs
journal, July 2015


Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP
journal, December 2015


A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
journal, June 2015

  • Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8373

Type-II Weyl semimetals
journal, November 2015

  • Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15768

Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate Mo x W 1 x Te 2
journal, August 2016


Prediction of Weyl semimetal in orthorhombic MoTe 2
journal, October 2015


TaIrTe 4 : A ternary type-II Weyl semimetal
journal, May 2016


Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides X P 2 ( X = Mo , W)
journal, August 2016


Discovery of Lorentz-violating type II Weyl fermions in LaAlGe
journal, June 2017


Predicted Unusual Magnetoresponse in Type-II Weyl Semimetals
journal, August 2016


Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2
journal, October 2016

  • Wang, Yaojia; Liu, Erfu; Liu, Huimei
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13142

Tunable Weyl semimetal and its possible realization in optical lattices
journal, March 2017


Topological nodal semimetals
journal, December 2011


Topological nodal line semimetals with and without spin-orbital coupling
journal, August 2015


Classification of topological quantum matter with symmetries
journal, August 2016


Classification of reflection-symmetry-protected topological semimetals and nodal superconductors
journal, November 2014


Topological nodal line semimetals
journal, November 2016


Topological nodal-line fermions in spin-orbit metal PbTaSe2
journal, February 2016

  • Bian, Guang; Chang, Tay-Rong; Sankar, Raman
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10556

Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2
journal, February 2016

  • Chang, Tay-Rong; Xu, Su-Yang; Chang, Guoqing
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10639

A new form of Ca 3 P 2 with a ring of Dirac nodes
journal, August 2015

  • Xie, Lilia S.; Schoop, Leslie M.; Seibel, Elizabeth M.
  • APL Materials, Vol. 3, Issue 8
  • DOI: 10.1063/1.4926545

Dirac Line Nodes in Inversion-Symmetric Crystals
journal, July 2015


Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu 3 PdN
journal, July 2015


Noncentrosymmetric superconductor with a bulk three-dimensional Dirac cone gapped by strong spin-orbit coupling
journal, January 2014


Type-II nodal loops: Theory and material realization
journal, August 2017


Type-II nodal line semimetal
journal, May 2018


Topological Type-II Nodal Line Semimetal and Dirac Semimetal State in Stable Kagome Compound Mg 3 Bi 2
journal, September 2017


Single Nodal Loop of Accidental Degeneracies in Minimal Symmetry: Triclinic CaAs 3
journal, April 2017


Topological insulators with inversion symmetry
journal, July 2007


Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection
journal, August 2011


Illuminating the Surface Spin Texture of the Giant-Rashba Quantum-Well System Bi / Ag ( 111 ) by Circularly Polarized Photoemission
journal, May 2012


Topological Phase Transition and Texture Inversion in a Tunable Topological Insulator
journal, March 2011


Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples
journal, December 2015


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Maximally localized generalized Wannier functions for composite energy bands
journal, November 1997


Maximally localized Wannier functions for entangled energy bands
journal, December 2001


wannier90: A tool for obtaining maximally-localised Wannier functions
journal, May 2008

  • Mostofi, Arash A.; Yates, Jonathan R.; Lee, Young-Su
  • Computer Physics Communications, Vol. 178, Issue 9
  • DOI: 10.1016/j.cpc.2007.11.016

    Works referencing / citing this record:

    Unconventional topological phase transition in non-symmorphic material KHgX (X = As, Sb, Bi)
    journal, June 2019


    Unconventional topological phase transition in non-symmorphic material KHgX (X = As, Sb, Bi)
    journal, June 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.