skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Key drivers of cloud response to surface-active organics

Abstract

Aerosol-cloud interactions constitute the largest source of uncertainty in global radiative forcing estimates, hampering our understanding of climate evolution. Recent empirical evidence suggests surface tension depression by organic aerosol to significantly influence the formation of cloud droplets, and hence cloud optical properties. In climate models, however, surface tension of water is generally assumed when predicting cloud droplet concentrations. Here we show that the sensitivity of cloud microphysics, optical properties and shortwave radiative effects to the surface phase are dictated by an interplay between the aerosol particle size distribution, composition, water availability and atmospheric dynamics. We demonstrate that accounting for the surface phase becomes essential in clean environments in which ultrafine particle sources are present. Through detailed sensitivity analysis, quantitative constraints on the key drivers – aerosol particle number concentrations, organic fraction and fixed updraft velocity – are derived for instances of significant cloud microphysical susceptibilities to the surface phase.

Authors:
 [1]; ORCiD logo [2];  [3];  [4];  [5];  [6]
  1. Stockholm Univ. (Sweden)
  2. Univ. of Exeter, Exeter (United Kingdom)
  3. Univ. of California, Riverside, CA (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Univ. of Manchester (United Kingdom)
  6. Stockholm Univ. (Sweden); Tampere Univ. of Technology, Tampere (Finland)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; Knut and Alice Wallenberg foundation
OSTI Identifier:
1580985
Grant/Contract Number:  
[AC02-05CH11231]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
[ Journal Volume: 10; Journal Issue: 1]; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Lowe, S. J., Partridge, D. G., Davies, J. F., Wilson, K. R., Topping, D., and Riipinen, I. Key drivers of cloud response to surface-active organics. United States: N. p., 2019. Web. doi:10.1038/s41467-019-12982-0.
Lowe, S. J., Partridge, D. G., Davies, J. F., Wilson, K. R., Topping, D., & Riipinen, I. Key drivers of cloud response to surface-active organics. United States. doi:10.1038/s41467-019-12982-0.
Lowe, S. J., Partridge, D. G., Davies, J. F., Wilson, K. R., Topping, D., and Riipinen, I. Mon . "Key drivers of cloud response to surface-active organics". United States. doi:10.1038/s41467-019-12982-0. https://www.osti.gov/servlets/purl/1580985.
@article{osti_1580985,
title = {Key drivers of cloud response to surface-active organics},
author = {Lowe, S. J. and Partridge, D. G. and Davies, J. F. and Wilson, K. R. and Topping, D. and Riipinen, I.},
abstractNote = {Aerosol-cloud interactions constitute the largest source of uncertainty in global radiative forcing estimates, hampering our understanding of climate evolution. Recent empirical evidence suggests surface tension depression by organic aerosol to significantly influence the formation of cloud droplets, and hence cloud optical properties. In climate models, however, surface tension of water is generally assumed when predicting cloud droplet concentrations. Here we show that the sensitivity of cloud microphysics, optical properties and shortwave radiative effects to the surface phase are dictated by an interplay between the aerosol particle size distribution, composition, water availability and atmospheric dynamics. We demonstrate that accounting for the surface phase becomes essential in clean environments in which ultrafine particle sources are present. Through detailed sensitivity analysis, quantitative constraints on the key drivers – aerosol particle number concentrations, organic fraction and fixed updraft velocity – are derived for instances of significant cloud microphysical susceptibilities to the surface phase.},
doi = {10.1038/s41467-019-12982-0},
journal = {Nature Communications},
number = [1],
volume = [10],
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Climate Modification by Atmospheric Aerosols
journal, June 1967


Pollution and the planetary albedo
journal, December 1974


Organic aerosol and global climate modelling: a review
journal, January 2005

  • Kanakidou, M.; Seinfeld, J. H.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1053-2005

The AeroCom evaluation and intercomparison of organic aerosol in global models
journal, January 2014

  • Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 19
  • DOI: 10.5194/acp-14-10845-2014

The nucleus in and the growth of hygroscopic droplets
journal, January 1936


Influence of particle size and chemistry on the cloud nucleating properties of aerosols
journal, January 2008

  • Quinn, P. K.; Bates, T. S.; Coffman, D. J.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 4
  • DOI: 10.5194/acp-8-1029-2008

Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets
journal, February 1996

  • Shulman, Michelle L.; Jacobson, Michael C.; Carlson, Robert J.
  • Geophysical Research Letters, Vol. 23, Issue 3
  • DOI: 10.1029/95GL03810

Surfactants in cloud droplet activation: mixed organic-inorganic particles
journal, January 2010

  • Prisle, N. L.; Raatikainen, T.; Laaksonen, A.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 12
  • DOI: 10.5194/acp-10-5663-2010

Surface Partitioning in Organic–Inorganic Mixtures Contributes to the Size-Dependence of the Phase-State of Atmospheric Nanoparticles
journal, July 2016

  • Werner, Josephina; Dalirian, Maryam; Walz, Marie-Madeleine
  • Environmental Science & Technology, Vol. 50, Issue 14
  • DOI: 10.1021/acs.est.6b00789

Inverse modelling of Köhler theory – Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species
journal, January 2016

  • Lowe, Samuel; Partridge, Daniel G.; Topping, David
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 17
  • DOI: 10.5194/acp-16-10941-2016

Strong evidence of surface tension reduction in microscopic aqueous droplets: MICROSCOPIC SURFACE TENSION
journal, December 2012

  • Ruehl, C. R.; Chuang, P. Y.; Nenes, A.
  • Geophysical Research Letters, Vol. 39, Issue 23
  • DOI: 10.1029/2012GL053706

An interfacial mechanism for cloud droplet formation on organic aerosols
journal, March 2016


Impact of fatty acid coating on the CCN activity of sea salt particles
journal, January 2017

  • Nguyen, Quynh T.; Kjær, Kristine H.; Kling, Kirsten I.
  • Tellus B: Chemical and Physical Meteorology, Vol. 69, Issue 1
  • DOI: 10.1080/16000889.2017.1304064

Surface tension prevails over solute effect in organic-influenced cloud droplet activation
journal, June 2017

  • Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari
  • Nature, Vol. 546, Issue 7660
  • DOI: 10.1038/nature22806

The role of surfactants in Köhler theory reconsidered
journal, January 2004

  • Sorjamaa, R.; Svenningsson, B.; Raatikainen, T.
  • Atmospheric Chemistry and Physics, Vol. 4, Issue 8
  • DOI: 10.5194/acp-4-2107-2004

Surfactant effects in global simulations of cloud droplet activation: SURFACTANT EFFECTS IN A GCM
journal, March 2012

  • Prisle, N. L.; Asmi, A.; Topping, D.
  • Geophysical Research Letters, Vol. 39, Issue 5
  • DOI: 10.1029/2011GL050467

Can chemical effects on cloud droplet number rival the first indirect effect?: CAN CHEMICAL EFFECTS ON CLOUD DROPLET NUMBER RIVAL INDIRECT EFFECT?
journal, September 2002

  • Nenes, Athanasios; Charlson, Robert J.; Facchini, M. Cristina
  • Geophysical Research Letters, Vol. 29, Issue 17
  • DOI: 10.1029/2002GL015295

Continued development of a cloud droplet formation parameterization for global climate models
journal, January 2005

  • Fountoukis, Christos
  • Journal of Geophysical Research, Vol. 110, Issue D11
  • DOI: 10.1029/2004JD005591

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010
journal, January 2011

  • Asmi, E.; Kivekäs, N.; Kerminen, V. -M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 24
  • DOI: 10.5194/acp-11-12959-2011

Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
journal, February 2001


Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
journal, February 2010

  • Saltelli, Andrea; Annoni, Paola; Azzini, Ivano
  • Computer Physics Communications, Vol. 181, Issue 2
  • DOI: 10.1016/j.cpc.2009.09.018

Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product
journal, January 2018


Cloud droplet number enhanced by co-condensation of organic vapours
journal, May 2013

  • Topping, David; Connolly, Paul; McFiggans, Gordon
  • Nature Geoscience, Vol. 6, Issue 6
  • DOI: 10.1038/ngeo1809

Biogenically driven organic contribution to marine aerosol
journal, October 2004

  • O'Dowd, Colin D.; Facchini, Maria Cristina; Cavalli, Fabrizia
  • Nature, Vol. 431, Issue 7009
  • DOI: 10.1038/nature02959

Aerosol characteristics of air masses in northern Europe: Influences of location, transport, sinks, and sources
journal, January 2005


Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009
journal, January 2012


Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head?
journal, January 2014

  • O'Dowd, C.; Ceburnis, D.; Ovadnevaite, J.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 19
  • DOI: 10.5194/acp-14-10687-2014

Inverse modelling of cloud-aerosol interactions – Part 2: Sensitivity tests on liquid phase clouds using a Markov chain Monte Carlo based simulation approach
journal, January 2012

  • Partridge, D. G.; Vrugt, J. A.; Tunved, P.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 6
  • DOI: 10.5194/acp-12-2823-2012

22 views of the global albedo—comparison between 20 GCMs and two satellites
journal, January 2006

  • Bender, Frida A. -M.; Rodhe, Henning; Charlson, Robert J.
  • Tellus A: Dynamic Meteorology and Oceanography, Vol. 58, Issue 3
  • DOI: 10.1111/j.1600-0870.2006.00181.x

Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3
journal, August 2016

  • Sipilä, Mikko; Sarnela, Nina; Jokinen, Tuija
  • Nature, Vol. 537, Issue 7621
  • DOI: 10.1038/nature19314

Pan-Arctic aerosol number size distributions: seasonality and transport patterns
journal, January 2017

  • Freud, Eyal; Krejci, Radovan; Tunved, Peter
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 13
  • DOI: 10.5194/acp-17-8101-2017

Microphysical explanation of the RH‐dependent water affinity of biogenic organic aerosol and its importance for climate
journal, May 2017

  • Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.
  • Geophysical Research Letters, Vol. 44, Issue 10
  • DOI: 10.1002/2017GL073056

Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo
journal, July 2015

  • McCoy, Daniel T.; Burrows, Susannah M.; Wood, Robert
  • Science Advances, Vol. 1, Issue 6
  • DOI: 10.1126/sciadv.1500157

Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
journal, January 2018

  • Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 2
  • DOI: 10.5194/acp-18-921-2018

Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics
journal, January 2018

  • Forestieri, Sara D.; Staudt, Sean M.; Kuborn, Thomas M.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 15
  • DOI: 10.5194/acp-18-10985-2018

Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles
journal, June 2006


A model study of the influence of aerosol size and chemical properties on precipitation formation in warm clouds: AEROSOL PROPERTIES AND DRIZZLE FORMATION
journal, November 2004

  • Roelofs, Geert-Jan; Jongen, Suzanne
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D22
  • DOI: 10.1029/2004JD004779

Inverse modeling of cloud-aerosol interactions – Part 1: Detailed response surface analysis
journal, January 2011

  • Partridge, D. G.; Vrugt, J. A.; Tunved, P.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 14
  • DOI: 10.5194/acp-11-7269-2011

An Approximating Polynomial for the Computation of Saturation Vapor Pressure
journal, January 1977


Kinetics of Hydrometeor Growth from a Vaper-Spherical Model
journal, November 1970


Submicron NE Atlantic marine aerosol chemical composition and abundance: Seasonal trends and air mass categorization: Seasonal Trends of Marine Aerosol
journal, October 2014

  • Ovadnevaite, Jurgita; Ceburnis, Darius; Leinert, Stephan
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 20
  • DOI: 10.1002/2013JD021330

Revising the hygroscopicity of inorganic sea salt particles
journal, July 2017

  • Zieger, P.; Väisänen, O.; Corbin, J. C.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15883

New evidence of an organic layer on marine aerosols
journal, January 2002


Constructing a data-driven receptor model for organic and inorganic aerosol – a synthesis analysis of eight mass spectrometric data sets from a boreal forest site
journal, January 2019

  • Äijälä, Mikko; Daellenbach, Kaspar R.; Canonaco, Francesco
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 6
  • DOI: 10.5194/acp-19-3645-2019

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Size distribution and chemical composition of marine aerosols: a compilation and review
journal, January 2000

  • Heintzenberg, J.; Covert, D. C.; Dingenen, R. Van
  • Tellus B: Chemical and Physical Meteorology, Vol. 52, Issue 4
  • DOI: 10.3402/tellusb.v52i4.17090

Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes
journal, November 1978


Surface-based remote sensing of the observed and the Adiabatic liquid water content of stratocumulus clouds
journal, January 1990

  • Albrecht, Bruce A.; Fairall, Christopher W.; Thomson, Dennis W.
  • Geophysical Research Letters, Vol. 17, Issue 1
  • DOI: 10.1029/GL017i001p00089

Light scattering in planetary atmospheres
journal, October 1974

  • Hansen, James E.; Travis, Larry D.
  • Space Science Reviews, Vol. 16, Issue 4
  • DOI: 10.1007/BF00168069

Multiple scattering of light and some of its observable consequences
journal, June 1987

  • Bohren, Craig F.
  • American Journal of Physics, Vol. 55, Issue 6
  • DOI: 10.1119/1.15109

Process-model simulations of cloud albedo enhancement by aerosols in the Arctic
journal, December 2014

  • Kravitz, Ben; Wang, Hailong; Rasch, Philip J.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 372, Issue 2031
  • DOI: 10.1098/rsta.2014.0052

Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds
journal, August 2008

  • Latham, John; Rasch, Philip; Chen, Chih-Chieh
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 366, Issue 1882
  • DOI: 10.1098/rsta.2008.0137

Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 1954–2008
journal, November 2011

  • Eastman, Ryan; Warren, Stephen G.; Hahn, Carole J.
  • Journal of Climate, Vol. 24, Issue 22
  • DOI: 10.1175/2011JCLI3972.1