skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes

Abstract

Lithium metal is a promising anode material for next-generation rechargeable batteries, but non-uniform electrodeposition of lithium is a significant barrier. These non-uniform deposits are often referred to as lithium “dendrites,” although their morphologies can vary. We have surveyed the literature on lithium electrodeposition through three classes of electrolytes: liquids, polymers and inorganic solids. We find that the non-uniform deposits can be grouped into six classes: whiskers, moss, dendrites, globules, trees, and cracks. These deposits were obtained in a variety of cell geometries using both unidirectional deposition and cell cycling. The main result of the study is a figure where the morphology of electrodeposited lithium is plotted as a function of two variables: shear modulus of the electrolyte and current density normalized by the limiting current density. We show that specific morphologies are confined to contiguous regions on this two-dimensional plot.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Science Foundation (NSF)
OSTI Identifier:
1580961
Grant/Contract Number:  
AC02-05CH11231; 2016218210; DGE 2752814
Resource Type:
Accepted Manuscript
Journal Name:
Frontiers in Energy Research
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2296-598X
Publisher:
Frontiers Research Foundation
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; dendrite; lithium metal; electrolytes; limiting current; rechargeable batteries

Citation Formats

Frenck, Louise, Sethi, Gurmukh K., Maslyn, Jacqueline A., and Balsara, Nitash P. Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes. United States: N. p., 2019. Web. doi:10.3389/fenrg.2019.00115.
Frenck, Louise, Sethi, Gurmukh K., Maslyn, Jacqueline A., & Balsara, Nitash P. Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes. United States. doi:10.3389/fenrg.2019.00115.
Frenck, Louise, Sethi, Gurmukh K., Maslyn, Jacqueline A., and Balsara, Nitash P. Fri . "Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes". United States. doi:10.3389/fenrg.2019.00115. https://www.osti.gov/servlets/purl/1580961.
@article{osti_1580961,
title = {Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes},
author = {Frenck, Louise and Sethi, Gurmukh K. and Maslyn, Jacqueline A. and Balsara, Nitash P.},
abstractNote = {Lithium metal is a promising anode material for next-generation rechargeable batteries, but non-uniform electrodeposition of lithium is a significant barrier. These non-uniform deposits are often referred to as lithium “dendrites,” although their morphologies can vary. We have surveyed the literature on lithium electrodeposition through three classes of electrolytes: liquids, polymers and inorganic solids. We find that the non-uniform deposits can be grouped into six classes: whiskers, moss, dendrites, globules, trees, and cracks. These deposits were obtained in a variety of cell geometries using both unidirectional deposition and cell cycling. The main result of the study is a figure where the morphology of electrodeposited lithium is plotted as a function of two variables: shear modulus of the electrolyte and current density normalized by the limiting current density. We show that specific morphologies are confined to contiguous regions on this two-dimensional plot.},
doi = {10.3389/fenrg.2019.00115},
journal = {Frontiers in Energy Research},
number = ,
volume = 7,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation
journal, January 2019

  • Meyerson, Melissa L.; Sheavly, Jonathan K.; Dolocan, Andrei
  • Journal of Materials Chemistry A, Vol. 7, Issue 24
  • DOI: 10.1039/C9TA03371H

In situ study of dendritic growth inlithium/PEO-salt/lithium cells
journal, April 1998


Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage
journal, November 2011


Lithium metal stripping/plating mechanisms studies: A metallurgical approach
journal, October 2006


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Fabrication of InGaAs Strained Quantum Wire Structures Using Selective-Area Metal-Organic Chemical Vapor Deposition Growth
journal, October 1993

  • Arakawa, Taro; Tsukamoto, Shiro; Nagamune, Yasushi
  • Japanese Journal of Applied Physics, Vol. 32, Issue Part 2, No. 10A
  • DOI: 10.1143/JJAP.32.L1377

Observation of dendritic growth on Li powder anode using optical cell
journal, November 2004


Morphological Transitions on Lithium Metal Anodes
journal, January 2009

  • López, Carmen M.; Vaughey, John T.; Dees, Dennis W.
  • Journal of The Electrochemical Society, Vol. 156, Issue 9
  • DOI: 10.1149/1.3158548

Preparation of Highly Lithium-Ion Conductive 80Li 2 S·20P 2 S 5 Thin-Film Electrolytes Using Pulsed Laser Deposition
journal, March 2010


Concentration measurements in lithium/polymer–electrolyte/lithium cells during cycling
journal, March 2001


Lithium dendrite growth mechanisms in liquid electrolytes
journal, November 2017


Direct determination of transference numbers of LiClO solutions in propylene carbonate and acetonitrile
journal, February 2005


The Mechanism of the Dendritic Electrocrystallization of Zinc
journal, January 1969

  • Diggle, J. W.; Despic, A. R.; Bockris, J. O'M.
  • Journal of The Electrochemical Society, Vol. 116, Issue 11
  • DOI: 10.1149/1.2411588

Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries
journal, January 2000

  • Aurbach, D.; Zinigrad, E.; Teller, H.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393349

Comparing the Energy Content of Batteries, Fuels, and Materials
journal, March 2013

  • Balsara, Nitash P.; Newman, John
  • Journal of Chemical Education, Vol. 90, Issue 4
  • DOI: 10.1021/ed3004066

Electrochemical aspects of the generation of ramified metallic electrodeposits
journal, December 1990


Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte
journal, January 1974

  • Selim, R.; Bro, P.
  • Journal of The Electrochemical Society, Vol. 121, Issue 11
  • DOI: 10.1149/1.2401708

Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte
journal, January 2017


Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium
journal, September 2014


Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Comparison of the growth of lithium filaments and dendrites under different conditions
journal, January 2015


High energy density lithium cells
journal, February 1976

  • Besenhard, J. O.; Eichinger, G.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 68, Issue 1
  • DOI: 10.1016/S0022-0728(76)80298-7

Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging
journal, January 2015

  • Eastwood, David S.; Bayley, Paul M.; Chang, Hee Jung
  • Chemical Communications, Vol. 51, Issue 2
  • DOI: 10.1039/C4CC03187C

Concentrated electrolyte solutions in organic solvents. Their specific conductance and analysis of Casteel—Amis equation
journal, August 1993


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes
journal, January 2018

  • Pesko, Danielle M.; Sawhney, Simar; Newman, John
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0231813jes

Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries
journal, December 2012

  • Mayers, Matthew Z.; Kaminski, Jakub W.; Miller, Thomas F.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 50
  • DOI: 10.1021/jp309321w

Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method
journal, April 2016


Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study
journal, December 2016

  • Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.0661702jes

Negative Stefan-Maxwell Diffusion Coefficients and Complete Electrochemical Transport Characterization of Homopolymer and Block Copolymer Electrolytes
journal, January 2018

  • Villaluenga, Irune; Pesko, Danielle M.; Timachova, Ksenia
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0641811jes

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

Ohm’s law for ion conduction in lithium and beyond-lithium battery electrolytes
journal, July 2019

  • Galluzzo, Michael D.; Maslyn, Jacqueline A.; Shah, Deep B.
  • The Journal of Chemical Physics, Vol. 151, Issue 2
  • DOI: 10.1063/1.5109684

In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte
journal, January 2013

  • Nagao, Motohiro; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 42
  • DOI: 10.1039/c3cp51059j

Mechanical Properties of Li 2 S–P 2 S 5 Glasses with Lithium Halides and Application in All-Solid-State Batteries
journal, March 2018

  • Kato, Atsutaka; Yamamoto, Mirai; Sakuda, Atsushi
  • ACS Applied Energy Materials, Vol. 1, Issue 3
  • DOI: 10.1021/acsaem.7b00140

Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions
journal, January 1987

  • Aurbach, D.
  • Journal of The Electrochemical Society, Vol. 134, Issue 7
  • DOI: 10.1149/1.2100722

Toward All-Solid-State Lithium Batteries: Three-Dimensional Visualization of Lithium Migration in β-Li 3 PS 4 Ceramic Electrolyte
journal, January 2018

  • Seitzman, Natalie; Guthrey, Harvey; Sulas, Dana B.
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0301816jes

Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries
journal, April 2018


Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries
journal, August 2018


High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
journal, January 2019


Electrochemical Deposition and Stripping Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane
journal, January 2015

  • Harry, Katherine J.; Liao, Xunxun; Parkinson, Dilworth Y.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0321514jes

Measurement of LiClO[sub 4] Diffusion Coefficient in Propylene Carbonate by Moiré Pattern
journal, January 2006

  • Nishikawa, K.; Fukunaka, Y.; Sakka, T.
  • Journal of The Electrochemical Society, Vol. 153, Issue 5
  • DOI: 10.1149/1.2178648

Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Multi-Scale Mechanical Behavior of the Li 3 PS 4 Solid-Phase Electrolyte
journal, October 2016

  • Baranowski, Lauryn L.; Heveran, Chelsea M.; Ferguson, Virginia L.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 43
  • DOI: 10.1021/acsami.6b06612

Behavior of Secondary Lithium and Aluminum-Lithium Electrodes in Propylene Carbonate
journal, January 1980

  • Epelboin, I.
  • Journal of The Electrochemical Society, Vol. 127, Issue 10
  • DOI: 10.1149/1.2129354

Effect of Electrolyte Composition on Lithium Dendrite Growth
journal, January 2008

  • Crowther, Owen; West, Alan C.
  • Journal of The Electrochemical Society, Vol. 155, Issue 11
  • DOI: 10.1149/1.2969424

Transport Properties of LiPF[sub 6]-Based Li-Ion Battery Electrolytes
journal, January 2005

  • Valo̸en, Lars Ole; Reimers, Jan N.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1872737

Computer Simulation of Dendritic Electrodeposition
journal, January 1985

  • Voss, Richard F.
  • Journal of The Electrochemical Society, Vol. 132, Issue 2
  • DOI: 10.1149/1.2113841

In Situ Observation of Dendrite Growth of Electrodeposited Li Metal
journal, January 2010

  • Nishikawa, Kei; Mori, Takeshi; Nishida, Tetsuo
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3486468

Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode
journal, January 2016

  • Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0191610jes

Dendrite short-circuit and fuse effect on Li/polymer/Li cells
journal, July 2006


Electrochemical measurement of transference numbers in polymer electrolytes
journal, December 1987


A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte
journal, August 1998


Columnar Lithium Metal Anodes
journal, September 2017

  • Zhang, Xue-Qiang; Chen, Xiang; Xu, Rui
  • Angewandte Chemie International Edition, Vol. 56, Issue 45
  • DOI: 10.1002/anie.201707093

Steady state current flow in solid binary electrolyte cells
journal, June 1987

  • Bruce, Peter G.; Vincent, Colin A.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 225, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80001-3

Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells
journal, January 2002

  • Dollé, Mickaël; Sannier, Lucas; Beaudoin, Bernard
  • Electrochemical and Solid-State Letters, Vol. 5, Issue 12
  • DOI: 10.1149/1.1519970

Lithium Dendrite Growth in Glassy and Rubbery Nanostructured Block Copolymer Electrolytes
journal, December 2014

  • Schauser, Nicole S.; Harry, Katherine J.; Parkinson, Dilworth Y.
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0511503jes

Onset of dendritic growth in lithium/polymer cells
journal, July 2001


Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries
journal, January 2019

  • Dai, Kuan; Ma, Cheng; Feng, Yiming
  • Journal of Materials Chemistry A, Vol. 7, Issue 31
  • DOI: 10.1039/C9TA05938E

In Situ Concentration Cartography in the Neighborhood of Dendrites Growing in Lithium/Polymer-Electrolyte/Lithium Cells
journal, January 1999

  • Brissot, C.
  • Journal of The Electrochemical Society, Vol. 146, Issue 12
  • DOI: 10.1149/1.1392649

Dendrite Growth in Lithium/Polymer Systems
journal, January 2003

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1606686

Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes
journal, July 2017

  • Porz, Lukas; Swamy, Tushar; Sheldon, Brian W.
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201701003

Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte
journal, August 2015


Growth of Lithium Dendrites and Globules through a Solid Block Copolymer Electrolyte as a Function of Current Density
journal, November 2018

  • Maslyn, Jacqueline A.; Loo, Whitney S.; McEntush, Kyle D.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 47
  • DOI: 10.1021/acs.jpcc.8b06355

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362