skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on March 18, 2020

Title: Ocean Acidification Regulates the Activity, Community Structure, and Functional Potential of Heterotrophic Bacterioplankton in an Oligotrophic Gyre

Abstract

Ocean acidification (OA), a result of increased global carbon dioxide (CO 2) emissions, is considered a major threat to marine ecosystems. Its effects on bacterioplankton activity, diversity, and community composition have received considerable attention. Yet, the direct impact of OA on heterotrophic bacterioplankton is often masked by the significant response of phytoplankton due to the close coupling of heterotrophic bacterioplankton and autotrophs. Here we investigated the responses of a heterotrophic bacterioplankton assemblage to high pCO 2 (790-ppm) treatment in warm tropical western Pacific waters by conducting a microcosm experiment in dark for 12 days. Heterotrophic bacterioplankton abundance and production were enhanced by OA over the first 6 days of incubation, while the diversity and species richness were negatively affected. Bacterioplankton community composition in the high pCO 2 treatment changed faster than that in the control. The molecular ecological network analysis showed that the elevated CO 2 changed the overall connections among the bacterial community and resulted in a simple network under high CO 2 condition. Species-specific responses to OA were observed and could be attributed to the different life strategies and to the ability of a given species to adapt to environmental conditions. In addition, high-throughput functional gene array analysis revealed thatmore » genes related to carbon and nitrogen cycling were positively affected by acidification. Together, our findings suggest that OA has direct effects on heterotrophic bacterioplankton in a low-latitude warm ocean and may therefore affect global biogeochemical cycles.« less

Authors:
ORCiD logo [1];  [2];  [2];  [2]; ORCiD logo [3];  [4]; ORCiD logo [2]; ORCiD logo [2]
  1. Chinese Academy of Sciences (CAS), Beijing (China)
  2. Xiamen Univ. (China)
  3. Univ. of Oklahoma, Norman, OK (United States)
  4. Univ. of Oklahoma, Norman, OK (United States); Tsinghua Univ., Beijing (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Natural Science Foundation of China (NNSFC)
OSTI Identifier:
1580827
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Biogeosciences
Additional Journal Information:
Journal Volume: 124; Journal Issue: 4; Journal ID: ISSN 2169-8953
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Xia, Xiaomin, Wang, Yu, Yang, Yunlan, Luo, Tingwei, Van Nostrand, Joy D., Zhou, Jizhong, Jiao, Nianzhi, and Zhang, Rui. Ocean Acidification Regulates the Activity, Community Structure, and Functional Potential of Heterotrophic Bacterioplankton in an Oligotrophic Gyre. United States: N. p., 2019. Web. doi:10.1029/2018jg004707.
Xia, Xiaomin, Wang, Yu, Yang, Yunlan, Luo, Tingwei, Van Nostrand, Joy D., Zhou, Jizhong, Jiao, Nianzhi, & Zhang, Rui. Ocean Acidification Regulates the Activity, Community Structure, and Functional Potential of Heterotrophic Bacterioplankton in an Oligotrophic Gyre. United States. doi:10.1029/2018jg004707.
Xia, Xiaomin, Wang, Yu, Yang, Yunlan, Luo, Tingwei, Van Nostrand, Joy D., Zhou, Jizhong, Jiao, Nianzhi, and Zhang, Rui. Mon . "Ocean Acidification Regulates the Activity, Community Structure, and Functional Potential of Heterotrophic Bacterioplankton in an Oligotrophic Gyre". United States. doi:10.1029/2018jg004707.
@article{osti_1580827,
title = {Ocean Acidification Regulates the Activity, Community Structure, and Functional Potential of Heterotrophic Bacterioplankton in an Oligotrophic Gyre},
author = {Xia, Xiaomin and Wang, Yu and Yang, Yunlan and Luo, Tingwei and Van Nostrand, Joy D. and Zhou, Jizhong and Jiao, Nianzhi and Zhang, Rui},
abstractNote = {Ocean acidification (OA), a result of increased global carbon dioxide (CO2) emissions, is considered a major threat to marine ecosystems. Its effects on bacterioplankton activity, diversity, and community composition have received considerable attention. Yet, the direct impact of OA on heterotrophic bacterioplankton is often masked by the significant response of phytoplankton due to the close coupling of heterotrophic bacterioplankton and autotrophs. Here we investigated the responses of a heterotrophic bacterioplankton assemblage to high pCO2 (790-ppm) treatment in warm tropical western Pacific waters by conducting a microcosm experiment in dark for 12 days. Heterotrophic bacterioplankton abundance and production were enhanced by OA over the first 6 days of incubation, while the diversity and species richness were negatively affected. Bacterioplankton community composition in the high pCO2 treatment changed faster than that in the control. The molecular ecological network analysis showed that the elevated CO2 changed the overall connections among the bacterial community and resulted in a simple network under high CO2 condition. Species-specific responses to OA were observed and could be attributed to the different life strategies and to the ability of a given species to adapt to environmental conditions. In addition, high-throughput functional gene array analysis revealed that genes related to carbon and nitrogen cycling were positively affected by acidification. Together, our findings suggest that OA has direct effects on heterotrophic bacterioplankton in a low-latitude warm ocean and may therefore affect global biogeochemical cycles.},
doi = {10.1029/2018jg004707},
journal = {Journal of Geophysical Research. Biogeosciences},
number = 4,
volume = 124,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 18, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

STAMP: statistical analysis of taxonomic and functional profiles
journal, July 2014


Will ocean acidification affect marine microbes?
journal, June 2010

  • Joint, Ian; Doney, Scott C.; Karl, David M.
  • The ISME Journal, Vol. 5, Issue 1
  • DOI: 10.1038/ismej.2010.79

Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms
journal, January 2013


Elevated CO 2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium
journal, February 2007


Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions
journal, January 2017

  • Hornick, Thomas; Bach, Lennart T.; Crawfurd, Katharine J.
  • Biogeosciences, Vol. 14, Issue 1
  • DOI: 10.5194/bg-14-1-2017

Contrasting effects of ocean acidification on the microbial food web under different trophic conditions
journal, August 2015

  • Sala, M. M.; Aparicio, F. L.; Balagué, V.
  • ICES Journal of Marine Science, Vol. 73, Issue 3
  • DOI: 10.1093/icesjms/fsv130

Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea
journal, February 2017

  • Rees, Andrew P.; Turk-Kubo, Kendra A.; Al-Moosawi, Lisa
  • Estuarine, Coastal and Shelf Science, Vol. 186
  • DOI: 10.1016/j.ecss.2016.01.020

Global declines in oceanic nitrification rates as a consequence of ocean acidification
journal, December 2010

  • Beman, J. Michael; Chow, Cheryl-Emiliane; King, Andrew L.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 1
  • DOI: 10.1073/pnas.1011053108

Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry
journal, January 2002

  • Lebaron, P.; Servais, P.; Baudoux, Ac
  • Aquatic Microbial Ecology, Vol. 28
  • DOI: 10.3354/ame028131

Physical and biogeochemical modulation of ocean acidification in the central North Pacific
journal, July 2009

  • Dore, J. E.; Lukas, R.; Sadler, D. W.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 30
  • DOI: 10.1073/pnas.0906044106

Response of rare, common and abundant bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site
journal, June 2015

  • Baltar, Federico; Palovaara, Joakim; Vila-Costa, Maria
  • FEMS Microbiology Ecology, Vol. 91, Issue 6
  • DOI: 10.1093/femsec/fiv058

Small Changes in pH Have Direct Effects on Marine Bacterial Community Composition: A Microcosm Approach
journal, October 2012


Nutrient Cycles and Marine Microbes in a CO2-Enriched Ocean
journal, December 2009


Enhanced Production of Oceanic Dimethylsulfide Resulting from CO 2 -Induced Grazing Activity in a High CO 2 World
journal, November 2010

  • Kim, Ja-Myung; Lee, Kitack; Yang, Eun Jin
  • Environmental Science & Technology, Vol. 44, Issue 21
  • DOI: 10.1021/es102028k

Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO 2 levels
journal, January 2008


Acidification alters the composition of ammonia‑oxidizing microbial assemblages in marine mesocosms
journal, October 2013

  • Bowen, Jl; Kearns, Pj; Holcomb, M.
  • Marine Ecology Progress Series, Vol. 492
  • DOI: 10.3354/meps10526

A practical tool for maximal information coefficient analysis
journal, April 2018


Volcanic carbon dioxide vents show ecosystem effects of ocean acidification
journal, June 2008

  • Hall-Spencer, Jason M.; Rodolfo-Metalpa, Riccardo; Martin, Sophie
  • Nature, Vol. 454, Issue 7200
  • DOI: 10.1038/nature07051

Ocean acidification effect on prokaryotic metabolism tested in two diverse trophic regimes in the Mediterranean Sea
journal, February 2017

  • Celussi, Mauro; Malfatti, Francesca; Annalisa, Franzo
  • Estuarine, Coastal and Shelf Science, Vol. 186
  • DOI: 10.1016/j.ecss.2015.08.015

Global Carbon Budget 2016
journal, January 2016

  • Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.
  • Earth System Science Data, Vol. 8, Issue 2
  • DOI: 10.5194/essd-8-605-2016

Response of two marine bacterial isolates to high CO2 concentration
journal, May 2012

  • Teira, E.; Fernández, A.; Álvarez-Salgado, Xa
  • Marine Ecology Progress Series, Vol. 453
  • DOI: 10.3354/meps09644

Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model
journal, November 2000

  • Cox, Peter M.; Betts, Richard A.; Jones, Chris D.
  • Nature, Vol. 408, Issue 6809
  • DOI: 10.1038/35041539

Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre
journal, October 2012

  • Gómez-Pereira, Paola R.; Hartmann, Manuela; Grob, Carolina
  • The ISME Journal, Vol. 7, Issue 3
  • DOI: 10.1038/ismej.2012.126

Short- and long-term conditioning of a temperate marine diatom community to acidification and warming
journal, October 2013

  • Tatters, Avery O.; Roleda, Michael Y.; Schnetzer, Astrid
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 368, Issue 1627
  • DOI: 10.1098/rstb.2012.0437

Response of bacterioplankton community structure to an artificial gradient of p CO 2 in the Arctic Ocean
journal, January 2013


The Microbial Carbon Pump: from Genes to Ecosystems
journal, August 2011

  • Jiao, Nianzhi; Zheng, Qiang
  • Applied and Environmental Microbiology, Vol. 77, Issue 21
  • DOI: 10.1128/AEM.05640-11

Coral and mollusc resistance to ocean acidification adversely affected by warming
journal, August 2011

  • Rodolfo-Metalpa, R.; Houlbrèque, F.; Tambutté, É.
  • Nature Climate Change, Vol. 1, Issue 6
  • DOI: 10.1038/nclimate1200

Global biogeography of SAR11 marine bacteria
journal, January 2012

  • Brown, Mark V.; Lauro, Federico M.; DeMaere, Matthew Z.
  • Molecular Systems Biology, Vol. 8, Issue 1
  • DOI: 10.1038/msb.2012.28

Abundance and distribution of carbohydrates in the ocean
journal, June 1994


Response of Nodularia spumigena to p CO 2 – Part 1: Growth, production and nitrogen cycling
journal, January 2012


Tracking the Variable North Atlantic Sink for Atmospheric CO2
journal, December 2009


Differential photoinhibition of bacterial and archaeal ammonia oxidation
journal, December 2011


The response of marine picoplankton to ocean acidification: Response of picoplankton to ocean acidification
journal, May 2012


Effects of seawater acidification on hydrolytic enzyme activities
journal, March 2010


Coral Reefs Under Rapid Climate Change and Ocean Acidification
journal, December 2007


Anthropogenic carbon and ocean pH
journal, September 2003

  • Caldeira, Ken; Wickett, Michael E.
  • Nature, Vol. 425, Issue 6956
  • DOI: 10.1038/425365a

Effect of ocean acidification on bacterial abundance, activity and diversity in the Ross Sea, Antarctica
journal, August 2013

  • Maas, Ew; Law, Cs; Hall, Ja
  • Aquatic Microbial Ecology, Vol. 70, Issue 1
  • DOI: 10.3354/ame01633

Distribution and Diversity of Archaeal Ammonia Monooxygenase Genes Associated with Corals
journal, June 2007

  • Beman, J. M.; Roberts, K. J.; Wegley, L.
  • Applied and Environmental Microbiology, Vol. 73, Issue 17
  • DOI: 10.1128/AEM.00461-07

Effects of ocean acidification on the biogenic composition of the sea-surface microlayer: Results from a mesocosm study
journal, November 2014

  • Galgani, Luisa; Stolle, Christian; Endres, Sonja
  • Journal of Geophysical Research: Oceans, Vol. 119, Issue 11
  • DOI: 10.1002/2014JC010188

Enceladus’s measured physical libration requires a global subsurface ocean
journal, January 2016


Microbial structuring of marine ecosystems
journal, October 2007

  • Azam, Farooq; Malfatti, Francesca
  • Nature Reviews Microbiology, Vol. 5, Issue 10
  • DOI: 10.1038/nrmicro1747

The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems
journal, September 1991


Marine microorganisms and global nutrient cycles
journal, September 2004


Polysaccharide aggregation as a potential sink of marine dissolved organic carbon
journal, April 2004

  • Engel, Anja; Thoms, Silke; Riebesell, Ulf
  • Nature, Vol. 428, Issue 6986
  • DOI: 10.1038/nature02453

High levels of heterogeneity in diazotroph diversity and activity within a putative hotspot for marine nitrogen fixation
journal, November 2015

  • Messer, Lauren F.; Mahaffey, Claire; M. Robinson, Charlotte
  • The ISME Journal, Vol. 10, Issue 6
  • DOI: 10.1038/ismej.2015.205

Response of bacterioplankton activity in an Arctic fjord system to elevated p CO 2 : results from a mesocosm perturbation study
journal, January 2013


Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation
journal, April 2012

  • Shakun, Jeremy D.; Clark, Peter U.; He, Feng
  • Nature, Vol. 484, Issue 7392
  • DOI: 10.1038/nature10915

Molecular ecological network analyses
journal, January 2012


Increased acidification has a profound effect on the interactions between the cyanobacterium Synechococcus sp. WH7803 and its viruses
journal, September 2013

  • Traving, Sachia J.; Clokie, Martha R. J.; Middelboe, Mathias
  • FEMS Microbiology Ecology, Vol. 87, Issue 1
  • DOI: 10.1111/1574-6941.12199

The impact of reduced pH on the microbial community of the coral Acropora eurystoma
journal, July 2010

  • Meron, Dalit; Atias, Elinor; Iasur Kruh, Lilach
  • The ISME Journal, Vol. 5, Issue 1
  • DOI: 10.1038/ismej.2010.102

The Ecological Role of Water-Column Microbes in the Sea
journal, January 1983

  • Azam, F.; Fenchel, T.; Field, Jg
  • Marine Ecology Progress Series, Vol. 10
  • DOI: 10.3354/meps010257

Phytoplankton-bacteria coupling under elevated CO 2 levels: a stable isotope labelling study
journal, January 2010


Cluster analysis and display of genome-wide expression patterns
journal, December 1998

  • Eisen, M. B.; Spellman, P. T.; Brown, P. O.
  • Proceedings of the National Academy of Sciences, Vol. 95, Issue 25
  • DOI: 10.1073/pnas.95.25.14863

Finding community structure in networks using the eigenvectors of matrices
journal, September 2006


Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO 2 levels: a mesocosm study
journal, January 2008

  • Allgaier, M.; Riebesell, U.; Vogt, M.
  • Biogeosciences Discussions, Vol. 5, Issue 1
  • DOI: 10.5194/bgd-5-317-2008

Optimising methodology for determining the effect of ocean acidification on bacterial extracellular enzymes
journal, January 2015

  • Burrell, T. J.; Maas, E. W.; Teesdale-Spittle, P.
  • Biogeosciences Discussions, Vol. 12, Issue 8
  • DOI: 10.5194/bgd-12-5841-2015

Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation
journal, August 2014

  • Qin, W.; Amin, S. A.; Martens-Habbena, W.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 34
  • DOI: 10.1073/pnas.1324115111

Computing topological parameters of biological networks
journal, November 2007


HemI: A Toolkit for Illustrating Heatmaps
journal, November 2014


Streamlining and Core Genome Conservation among Highly Divergent Members of the SAR11 Clade
journal, September 2012


Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton
journal, January 2006

  • Grossart, Hans-Peter; Allgaier, Martin; Passow, Uta
  • Limnology and Oceanography, Vol. 51, Issue 1
  • DOI: 10.4319/lo.2006.51.1.0001

Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning
journal, December 2010

  • Liu, J.; Weinbauer, Mg; Maier, C.
  • Aquatic Microbial Ecology, Vol. 61, Issue 3
  • DOI: 10.3354/ame01446

Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities
journal, October 2009

  • Schloss, P. D.; Westcott, S. L.; Ryabin, T.
  • Applied and Environmental Microbiology, Vol. 75, Issue 23, p. 7537-7541
  • DOI: 10.1128/AEM.01541-09

Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks
journal, November 2003


Effect of increased p CO 2 on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms
journal, August 2012


Enhanced biological carbon consumption in a high CO2 ocean
journal, November 2007

  • Riebesell, U.; Schulz, K. G.; Bellerby, R. G. J.
  • Nature, Vol. 450, Issue 7169
  • DOI: 10.1038/nature06267

Global Warming and Marine Carbon Cycle Feedbacks on Future Atmospheric CO2
journal, April 1999


Compensation of ocean acidification effects in Arctic phytoplankton assemblages
journal, April 2018

  • Hoppe, Clara Jule Marie; Wolf, Klara K. E.; Schuback, Nina
  • Nature Climate Change, Vol. 8, Issue 6
  • DOI: 10.1038/s41558-018-0142-9

Acidification increases microbial polysaccharide degradation in the ocean
journal, January 2010


Alterations in microbial community composition with increasing f CO 2 : a mesocosm study in the eastern Baltic Sea
journal, January 2017

  • Crawfurd, Katharine J.; Alvarez-Fernandez, Santiago; Mojica, Kristina D. A.
  • Biogeosciences, Vol. 14, Issue 16
  • DOI: 10.5194/bg-14-3831-2017

New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation
journal, May 2007

  • Francis, Christopher A.; Beman, J. Michael; Kuypers, Marcel M. M.
  • The ISME Journal, Vol. 1, Issue 1
  • DOI: 10.1038/ismej.2007.8

High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean
journal, August 2004

  • Montoya, Joseph P.; Holl, Carolyn M.; Zehr, Jonathan P.
  • Nature, Vol. 430, Issue 7003
  • DOI: 10.1038/nature02824

Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis
journal, November 2015

  • Wang, Yu; Zhang, Rui; Zheng, Qiang
  • ICES Journal of Marine Science, Vol. 73, Issue 3
  • DOI: 10.1093/icesjms/fsv187

The Effect of Ocean Acidification on Calcifying Organisms in Marine Ecosystems: An Organism-to-Ecosystem Perspective
journal, December 2010


The complex effects of ocean acidification on the prominent N 2 -fixing cyanobacterium Trichodesmium
journal, April 2017


Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean
journal, July 2010

  • Jiao, Nianzhi; Herndl, Gerhard J.; Hansell, Dennis A.
  • Nature Reviews Microbiology, Vol. 8, Issue 8
  • DOI: 10.1038/nrmicro2386

Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments
journal, September 2017


The Effects of Ocean Acidity and Elevated Temperature on Bacterioplankton Community Structure and Metabolism
journal, January 2014

  • Siu, Nam; Apple, Jude K.; Moyer, Craig L.
  • Open Journal of Ecology, Vol. 04, Issue 08
  • DOI: 10.4236/oje.2014.48038

Transport and storage of CO2 in the ocean ??an inorganic ocean-circulation carbon cycle model
journal, August 1987

  • Maier-Reimer, E.; Hasselmann, K.
  • Climate Dynamics, Vol. 2, Issue 2
  • DOI: 10.1007/BF01054491

Effect of Ocean Acidification on Iron Availability to Marine Phytoplankton
journal, January 2010


The modularity of pollination networks
journal, December 2007

  • Olesen, J. M.; Bascompte, J.; Dupont, Y. L.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 50
  • DOI: 10.1073/pnas.0706375104

Marine viruses and their biogeochemical and ecological effects
journal, June 1999

  • Fuhrman, Jed A.
  • Nature, Vol. 399, Issue 6736
  • DOI: 10.1038/21119

Sensitivity of coccolithophores to carbonate chemistry and ocean acidification
journal, August 2011

  • Beaufort, L.; Probert, I.; de Garidel-Thoron, T.
  • Nature, Vol. 476, Issue 7358
  • DOI: 10.1038/nature10295

Stimulated Bacterial Growth under Elevated pCO2: Results from an Off-Shore Mesocosm Study
journal, June 2014


The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean
journal, August 1997

  • Karl, D.; Letelier, R.; Tupas, L.
  • Nature, Vol. 388, Issue 6642
  • DOI: 10.1038/41474

Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer
journal, January 2018

  • Westwood, K. J.; Thomson, P. G.; van den Enden, R. L.
  • Journal of Experimental Marine Biology and Ecology, Vol. 498
  • DOI: 10.1016/j.jembe.2017.11.003

Effect of increased pCO2 on phytoplankton–virus interactions
journal, January 2012


Response of an Arctic Sediment Nitrogen Cycling Community to Increased CO2
journal, September 2013


Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2
journal, January 2016

  • Bunse, Carina; Lundin, Daniel; Karlsson, Christofer M. G.
  • Nature Climate Change, Vol. 6, Issue 5
  • DOI: 10.1038/nclimate2914

Functional Molecular Ecological Networks
journal, October 2010